Cargando…
Accurate, interpretable predictions of materials properties within transformer language models
Property prediction accuracy has long been a key parameter of machine learning in materials informatics. Accordingly, advanced models showing state-of-the-art performance turn into highly parameterized black boxes missing interpretability. Here, we present an elegant way to make their reasoning tran...
Autores principales: | Korolev, Vadim, Protsenko, Pavel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591138/ https://www.ncbi.nlm.nih.gov/pubmed/37876904 http://dx.doi.org/10.1016/j.patter.2023.100803 |
Ejemplares similares
-
A universal similarity based approach for predictive uncertainty quantification in materials science
por: Korolev, Vadim, et al.
Publicado: (2022) -
Interpretable and accurate prediction models for metagenomics data
por: Prifti, Edi, et al.
Publicado: (2020) -
MuLan-Methyl—multiple transformer-based language models for accurate DNA methylation prediction
por: Zeng, Wenhuan, et al.
Publicado: (2023) -
Machine learning of material properties: Predictive and interpretable multilinear models
por: Allen, Alice E. A., et al.
Publicado: (2022) -
An accurate and interpretable model for siRNA efficacy prediction
por: Vert, Jean-Philippe, et al.
Publicado: (2006)