Cargando…
Leveraging cell-cell similarity for high-performance spatial and temporal cellular mappings from gene expression data
Single-cell trajectory mapping and spatial reconstruction are two important developments in life science and provide a unique means to decode heterogeneous tissue formation, cellular dynamics, and tissue developmental processes. The success of these techniques depends critically on the performance o...
Autores principales: | Islam, Md Tauhidul, Xing, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591141/ https://www.ncbi.nlm.nih.gov/pubmed/37876896 http://dx.doi.org/10.1016/j.patter.2023.100840 |
Ejemplares similares
-
Cartography of Genomic Interactions Enables Deep Analysis of Single-Cell Expression Data
por: Islam, Md Tauhidul, et al.
Publicado: (2023) -
Leveraging data-driven self-consistency for high-fidelity gene expression recovery
por: Islam, Md Tauhidul, et al.
Publicado: (2022) -
Temporal Ordering of Dynamic Expression Data from Detailed Spatial Expression Maps
por: Bailey, Charlotte S.L., et al.
Publicado: (2017) -
Similarities and differences in spatial and non-spatial cognitive maps
por: Wu, Charley M., et al.
Publicado: (2020) -
VoPo leverages cellular heterogeneity for predictive modeling of single-cell data
por: Stanley, Natalie, et al.
Publicado: (2020)