Cargando…
Integrating Explainability into Graph Neural Network Models for the Prediction of X-ray Absorption Spectra
[Image: see text] The use of sophisticated machine learning (ML) models, such as graph neural networks (GNNs), to predict complex molecular properties or all kinds of spectra has grown rapidly. However, ensuring the interpretability of these models’ predictions remains a challenge. For example, a ri...
Autores principales: | Kotobi, Amir, Singh, Kanishka, Höche, Daniel, Bari, Sadia, Meißner, Robert H., Bande, Annika |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591337/ https://www.ncbi.nlm.nih.gov/pubmed/37807700 http://dx.doi.org/10.1021/jacs.3c07513 |
Ejemplares similares
-
Oxygen K-edge X-ray Absorption Spectra
por: Frati, Federica, et al.
Publicado: (2020) -
Many-body effects in the X-ray absorption spectra of liquid water
por: Tang, Fujie, et al.
Publicado: (2022) -
A new route to obtain fluorescence X-ray absorption spectra of compounds and to remove the self-absorption induced nonlinearity in the spectra
por: Ma, Qing, et al.
Publicado: (2022) -
GraphXCOVID: Explainable deep graph diffusion pseudo-Labelling for identifying COVID-19 on chest X-rays
por: Aviles-Rivero, Angelica I., et al.
Publicado: (2022) -
Combining reverse Monte Carlo analysis of X-ray scattering and extended X-ray absorption fine structure spectra of very small nanoparticles
por: Winterer, Markus, et al.
Publicado: (2023)