Cargando…

aMeta: an accurate and memory-efficient ancient metagenomic profiling workflow

Analysis of microbial data from archaeological samples is a growing field with great potential for understanding ancient environments, lifestyles, and diseases. However, high error rates have been a challenge in ancient metagenomics, and the availability of computational frameworks that meet the dem...

Descripción completa

Detalles Bibliográficos
Autores principales: Pochon, Zoé, Bergfeldt, Nora, Kırdök, Emrah, Vicente, Mário, Naidoo, Thijessen, van der Valk, Tom, Altınışık, N. Ezgi, Krzewińska, Maja, Dalén, Love, Götherström, Anders, Mirabello, Claudio, Unneberg, Per, Oskolkov, Nikolay
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591440/
https://www.ncbi.nlm.nih.gov/pubmed/37872569
http://dx.doi.org/10.1186/s13059-023-03083-9
_version_ 1785124223833866240
author Pochon, Zoé
Bergfeldt, Nora
Kırdök, Emrah
Vicente, Mário
Naidoo, Thijessen
van der Valk, Tom
Altınışık, N. Ezgi
Krzewińska, Maja
Dalén, Love
Götherström, Anders
Mirabello, Claudio
Unneberg, Per
Oskolkov, Nikolay
author_facet Pochon, Zoé
Bergfeldt, Nora
Kırdök, Emrah
Vicente, Mário
Naidoo, Thijessen
van der Valk, Tom
Altınışık, N. Ezgi
Krzewińska, Maja
Dalén, Love
Götherström, Anders
Mirabello, Claudio
Unneberg, Per
Oskolkov, Nikolay
author_sort Pochon, Zoé
collection PubMed
description Analysis of microbial data from archaeological samples is a growing field with great potential for understanding ancient environments, lifestyles, and diseases. However, high error rates have been a challenge in ancient metagenomics, and the availability of computational frameworks that meet the demands of the field is limited. Here, we propose aMeta, an accurate metagenomic profiling workflow for ancient DNA designed to minimize the amount of false discoveries and computer memory requirements. Using simulated data, we benchmark aMeta against a current state-of-the-art workflow and demonstrate its superiority in microbial detection and authentication, as well as substantially lower usage of computer memory. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-023-03083-9.
format Online
Article
Text
id pubmed-10591440
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-105914402023-10-24 aMeta: an accurate and memory-efficient ancient metagenomic profiling workflow Pochon, Zoé Bergfeldt, Nora Kırdök, Emrah Vicente, Mário Naidoo, Thijessen van der Valk, Tom Altınışık, N. Ezgi Krzewińska, Maja Dalén, Love Götherström, Anders Mirabello, Claudio Unneberg, Per Oskolkov, Nikolay Genome Biol Method Analysis of microbial data from archaeological samples is a growing field with great potential for understanding ancient environments, lifestyles, and diseases. However, high error rates have been a challenge in ancient metagenomics, and the availability of computational frameworks that meet the demands of the field is limited. Here, we propose aMeta, an accurate metagenomic profiling workflow for ancient DNA designed to minimize the amount of false discoveries and computer memory requirements. Using simulated data, we benchmark aMeta against a current state-of-the-art workflow and demonstrate its superiority in microbial detection and authentication, as well as substantially lower usage of computer memory. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-023-03083-9. BioMed Central 2023-10-23 /pmc/articles/PMC10591440/ /pubmed/37872569 http://dx.doi.org/10.1186/s13059-023-03083-9 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Method
Pochon, Zoé
Bergfeldt, Nora
Kırdök, Emrah
Vicente, Mário
Naidoo, Thijessen
van der Valk, Tom
Altınışık, N. Ezgi
Krzewińska, Maja
Dalén, Love
Götherström, Anders
Mirabello, Claudio
Unneberg, Per
Oskolkov, Nikolay
aMeta: an accurate and memory-efficient ancient metagenomic profiling workflow
title aMeta: an accurate and memory-efficient ancient metagenomic profiling workflow
title_full aMeta: an accurate and memory-efficient ancient metagenomic profiling workflow
title_fullStr aMeta: an accurate and memory-efficient ancient metagenomic profiling workflow
title_full_unstemmed aMeta: an accurate and memory-efficient ancient metagenomic profiling workflow
title_short aMeta: an accurate and memory-efficient ancient metagenomic profiling workflow
title_sort ameta: an accurate and memory-efficient ancient metagenomic profiling workflow
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591440/
https://www.ncbi.nlm.nih.gov/pubmed/37872569
http://dx.doi.org/10.1186/s13059-023-03083-9
work_keys_str_mv AT pochonzoe ametaanaccurateandmemoryefficientancientmetagenomicprofilingworkflow
AT bergfeldtnora ametaanaccurateandmemoryefficientancientmetagenomicprofilingworkflow
AT kırdokemrah ametaanaccurateandmemoryefficientancientmetagenomicprofilingworkflow
AT vicentemario ametaanaccurateandmemoryefficientancientmetagenomicprofilingworkflow
AT naidoothijessen ametaanaccurateandmemoryefficientancientmetagenomicprofilingworkflow
AT vandervalktom ametaanaccurateandmemoryefficientancientmetagenomicprofilingworkflow
AT altınısıknezgi ametaanaccurateandmemoryefficientancientmetagenomicprofilingworkflow
AT krzewinskamaja ametaanaccurateandmemoryefficientancientmetagenomicprofilingworkflow
AT dalenlove ametaanaccurateandmemoryefficientancientmetagenomicprofilingworkflow
AT gotherstromanders ametaanaccurateandmemoryefficientancientmetagenomicprofilingworkflow
AT mirabelloclaudio ametaanaccurateandmemoryefficientancientmetagenomicprofilingworkflow
AT unnebergper ametaanaccurateandmemoryefficientancientmetagenomicprofilingworkflow
AT oskolkovnikolay ametaanaccurateandmemoryefficientancientmetagenomicprofilingworkflow