Cargando…
Controlled-Radical Polymerization of α-Lipoic Acid: A General Route to Degradable Vinyl Copolymers
[Image: see text] Here, we present the synthesis and characterization of statistical and block copolymers containing α-lipoic acid (LA) using reversible addition–fragmentation chain-transfer (RAFT) polymerization. LA, a readily available nutritional supplement, undergoes efficient radical ring-openi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591472/ https://www.ncbi.nlm.nih.gov/pubmed/37813389 http://dx.doi.org/10.1021/jacs.3c08248 |
Sumario: | [Image: see text] Here, we present the synthesis and characterization of statistical and block copolymers containing α-lipoic acid (LA) using reversible addition–fragmentation chain-transfer (RAFT) polymerization. LA, a readily available nutritional supplement, undergoes efficient radical ring-opening copolymerization with vinyl monomers in a controlled manner with predictable molecular weights and low molar-mass dispersities. Because lipoic acid diads present in the resulting copolymers include disulfide bonds, these materials efficiently and rapidly degrade when exposed to mild reducing agents such as tris(2-carboxyethyl)phosphine (M(n) = 56 → 3.6 kg mol(–1)). This scalable and versatile polymerization method affords a facile way to synthesize degradable polymers with controlled architectures, molecular weights, and molar-mass dispersities from α-lipoic acid, a commercially available and renewable monomer. |
---|