Cargando…

Coupled Cluster Simulation of Impulsive Stimulated X-ray Raman Scattering

[Image: see text] Time-dependent equation-of-motion coupled cluster (TD-EOM-CC) is used to simulate impulsive stimulated X-ray Raman scattering (ISXRS) of ultrashort laser pulses by neon, carbon monoxide, pyrrole, and p-aminophenol. The TD-EOM-CC equations are expressed in the basis of field-free EO...

Descripción completa

Detalles Bibliográficos
Autores principales: Balbi, Alice, Skeidsvoll, Andreas S., Koch, Henrik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591507/
https://www.ncbi.nlm.nih.gov/pubmed/37812082
http://dx.doi.org/10.1021/acs.jpca.3c03678
Descripción
Sumario:[Image: see text] Time-dependent equation-of-motion coupled cluster (TD-EOM-CC) is used to simulate impulsive stimulated X-ray Raman scattering (ISXRS) of ultrashort laser pulses by neon, carbon monoxide, pyrrole, and p-aminophenol. The TD-EOM-CC equations are expressed in the basis of field-free EOM-CC states, where the calculation of the core-excited states is simplified through the use of the core–valence separation (CVS) approximation. The transfer of electronic population from the ground state to the core- and valence-excited states is calculated for different numbers of included core- and valence-excited states, as well as for electric field pulses with different polarizations and carrier frequencies. The results indicate that Gaussian pulses can transfer significant electronic populations to the valence states through the Raman process. The sensitivity of this population transfer to the model parameters is analyzed. The time-dependent electronic density for p-aminophenol is also showcased, supporting the interpretation that ISXRS involves localized core excitations and can be used to rapidly generate valence wavepackets.