Cargando…

Neural decoding reveals specialized kinematic tuning after an abrupt cortical transition

The primary motor cortex (M1) exhibits a protracted period of development, including the development of a sensory representation long before motor outflow emerges. In rats, this representation is present by postnatal day (P) 8, when M1 activity is “discontinuous.” Here, we ask how the representation...

Descripción completa

Detalles Bibliográficos
Autores principales: Glanz, Ryan M., Sokoloff, Greta, Blumberg, Mark S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591925/
https://www.ncbi.nlm.nih.gov/pubmed/37690023
http://dx.doi.org/10.1016/j.celrep.2023.113119
Descripción
Sumario:The primary motor cortex (M1) exhibits a protracted period of development, including the development of a sensory representation long before motor outflow emerges. In rats, this representation is present by postnatal day (P) 8, when M1 activity is “discontinuous.” Here, we ask how the representation changes upon the transition to “continuous” activity at P12. We use neural decoding to predict forelimb movements from M1 activity and show that a linear decoder effectively predicts limb movements at P8 but not at P12; instead, a nonlinear decoder better predicts limb movements at P12. The altered decoder performance reflects increased complexity and uniqueness of kinematic information in M1. We next show that M1’s representation at P12 is more susceptible to “lesioning” of inputs and “transplanting” of M1’s encoding scheme from one pup to another. Thus, the emergence of continuous M1 activity signals the developmental onset of more complex, informationally sparse, and individualized sensory representations.