Cargando…
Btbd11 supports cell-type-specific synaptic function
Synapses in the brain exhibit cell-type-specific differences in basal synaptic transmission and plasticity. Here, we evaluated cell-type-specific specializations in the composition of glutamatergic synapses, identifying Btbd11 as an inhibitory interneuron-specific, synapse-enriched protein. Btbd11 i...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592477/ https://www.ncbi.nlm.nih.gov/pubmed/37261953 http://dx.doi.org/10.1016/j.celrep.2023.112591 |
_version_ | 1785124313102286848 |
---|---|
author | Bygrave, Alexei M. Sengupta, Ayesha Jackert, Ella P. Ahmed, Mehroz Adenuga, Beloved Nelson, Erik Goldschmidt, Hana L. Johnson, Richard C. Zhong, Haining Yeh, Felix L. Sheng, Morgan Huganir, Richard L. |
author_facet | Bygrave, Alexei M. Sengupta, Ayesha Jackert, Ella P. Ahmed, Mehroz Adenuga, Beloved Nelson, Erik Goldschmidt, Hana L. Johnson, Richard C. Zhong, Haining Yeh, Felix L. Sheng, Morgan Huganir, Richard L. |
author_sort | Bygrave, Alexei M. |
collection | PubMed |
description | Synapses in the brain exhibit cell-type-specific differences in basal synaptic transmission and plasticity. Here, we evaluated cell-type-specific specializations in the composition of glutamatergic synapses, identifying Btbd11 as an inhibitory interneuron-specific, synapse-enriched protein. Btbd11 is highly conserved across species and binds to core postsynaptic proteins, including Psd-95. Intriguingly, we show that Btbd11 can undergo liquid-liquid phase separation when expressed with Psd-95, supporting the idea that the glutamatergic postsynaptic density in synapses in inhibitory interneurons exists in a phase-separated state. Knockout of Btbd11 decreased glutamatergic signaling onto parvalbumin-positive interneurons. Further, both in vitro and in vivo, Btbd11 knockout disrupts network activity. At the behavioral level, Btbd11 knockout from interneurons alters exploratory behavior, measures of anxiety, and sensitizes mice to pharmacologically induced hyperactivity following NMDA receptor antagonist challenge. Our findings identify a cell-type-specific mechanism that supports glutamatergic synapse function in inhibitory interneurons—with implications for circuit function and animal behavior. |
format | Online Article Text |
id | pubmed-10592477 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
record_format | MEDLINE/PubMed |
spelling | pubmed-105924772023-10-23 Btbd11 supports cell-type-specific synaptic function Bygrave, Alexei M. Sengupta, Ayesha Jackert, Ella P. Ahmed, Mehroz Adenuga, Beloved Nelson, Erik Goldschmidt, Hana L. Johnson, Richard C. Zhong, Haining Yeh, Felix L. Sheng, Morgan Huganir, Richard L. Cell Rep Article Synapses in the brain exhibit cell-type-specific differences in basal synaptic transmission and plasticity. Here, we evaluated cell-type-specific specializations in the composition of glutamatergic synapses, identifying Btbd11 as an inhibitory interneuron-specific, synapse-enriched protein. Btbd11 is highly conserved across species and binds to core postsynaptic proteins, including Psd-95. Intriguingly, we show that Btbd11 can undergo liquid-liquid phase separation when expressed with Psd-95, supporting the idea that the glutamatergic postsynaptic density in synapses in inhibitory interneurons exists in a phase-separated state. Knockout of Btbd11 decreased glutamatergic signaling onto parvalbumin-positive interneurons. Further, both in vitro and in vivo, Btbd11 knockout disrupts network activity. At the behavioral level, Btbd11 knockout from interneurons alters exploratory behavior, measures of anxiety, and sensitizes mice to pharmacologically induced hyperactivity following NMDA receptor antagonist challenge. Our findings identify a cell-type-specific mechanism that supports glutamatergic synapse function in inhibitory interneurons—with implications for circuit function and animal behavior. 2023-06-27 2023-05-31 /pmc/articles/PMC10592477/ /pubmed/37261953 http://dx.doi.org/10.1016/j.celrep.2023.112591 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ). |
spellingShingle | Article Bygrave, Alexei M. Sengupta, Ayesha Jackert, Ella P. Ahmed, Mehroz Adenuga, Beloved Nelson, Erik Goldschmidt, Hana L. Johnson, Richard C. Zhong, Haining Yeh, Felix L. Sheng, Morgan Huganir, Richard L. Btbd11 supports cell-type-specific synaptic function |
title | Btbd11 supports cell-type-specific synaptic function |
title_full | Btbd11 supports cell-type-specific synaptic function |
title_fullStr | Btbd11 supports cell-type-specific synaptic function |
title_full_unstemmed | Btbd11 supports cell-type-specific synaptic function |
title_short | Btbd11 supports cell-type-specific synaptic function |
title_sort | btbd11 supports cell-type-specific synaptic function |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592477/ https://www.ncbi.nlm.nih.gov/pubmed/37261953 http://dx.doi.org/10.1016/j.celrep.2023.112591 |
work_keys_str_mv | AT bygravealexeim btbd11supportscelltypespecificsynapticfunction AT senguptaayesha btbd11supportscelltypespecificsynapticfunction AT jackertellap btbd11supportscelltypespecificsynapticfunction AT ahmedmehroz btbd11supportscelltypespecificsynapticfunction AT adenugabeloved btbd11supportscelltypespecificsynapticfunction AT nelsonerik btbd11supportscelltypespecificsynapticfunction AT goldschmidthanal btbd11supportscelltypespecificsynapticfunction AT johnsonrichardc btbd11supportscelltypespecificsynapticfunction AT zhonghaining btbd11supportscelltypespecificsynapticfunction AT yehfelixl btbd11supportscelltypespecificsynapticfunction AT shengmorgan btbd11supportscelltypespecificsynapticfunction AT huganirrichardl btbd11supportscelltypespecificsynapticfunction |