Cargando…

Btbd11 supports cell-type-specific synaptic function

Synapses in the brain exhibit cell-type-specific differences in basal synaptic transmission and plasticity. Here, we evaluated cell-type-specific specializations in the composition of glutamatergic synapses, identifying Btbd11 as an inhibitory interneuron-specific, synapse-enriched protein. Btbd11 i...

Descripción completa

Detalles Bibliográficos
Autores principales: Bygrave, Alexei M., Sengupta, Ayesha, Jackert, Ella P., Ahmed, Mehroz, Adenuga, Beloved, Nelson, Erik, Goldschmidt, Hana L., Johnson, Richard C., Zhong, Haining, Yeh, Felix L., Sheng, Morgan, Huganir, Richard L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592477/
https://www.ncbi.nlm.nih.gov/pubmed/37261953
http://dx.doi.org/10.1016/j.celrep.2023.112591
_version_ 1785124313102286848
author Bygrave, Alexei M.
Sengupta, Ayesha
Jackert, Ella P.
Ahmed, Mehroz
Adenuga, Beloved
Nelson, Erik
Goldschmidt, Hana L.
Johnson, Richard C.
Zhong, Haining
Yeh, Felix L.
Sheng, Morgan
Huganir, Richard L.
author_facet Bygrave, Alexei M.
Sengupta, Ayesha
Jackert, Ella P.
Ahmed, Mehroz
Adenuga, Beloved
Nelson, Erik
Goldschmidt, Hana L.
Johnson, Richard C.
Zhong, Haining
Yeh, Felix L.
Sheng, Morgan
Huganir, Richard L.
author_sort Bygrave, Alexei M.
collection PubMed
description Synapses in the brain exhibit cell-type-specific differences in basal synaptic transmission and plasticity. Here, we evaluated cell-type-specific specializations in the composition of glutamatergic synapses, identifying Btbd11 as an inhibitory interneuron-specific, synapse-enriched protein. Btbd11 is highly conserved across species and binds to core postsynaptic proteins, including Psd-95. Intriguingly, we show that Btbd11 can undergo liquid-liquid phase separation when expressed with Psd-95, supporting the idea that the glutamatergic postsynaptic density in synapses in inhibitory interneurons exists in a phase-separated state. Knockout of Btbd11 decreased glutamatergic signaling onto parvalbumin-positive interneurons. Further, both in vitro and in vivo, Btbd11 knockout disrupts network activity. At the behavioral level, Btbd11 knockout from interneurons alters exploratory behavior, measures of anxiety, and sensitizes mice to pharmacologically induced hyperactivity following NMDA receptor antagonist challenge. Our findings identify a cell-type-specific mechanism that supports glutamatergic synapse function in inhibitory interneurons—with implications for circuit function and animal behavior.
format Online
Article
Text
id pubmed-10592477
institution National Center for Biotechnology Information
language English
publishDate 2023
record_format MEDLINE/PubMed
spelling pubmed-105924772023-10-23 Btbd11 supports cell-type-specific synaptic function Bygrave, Alexei M. Sengupta, Ayesha Jackert, Ella P. Ahmed, Mehroz Adenuga, Beloved Nelson, Erik Goldschmidt, Hana L. Johnson, Richard C. Zhong, Haining Yeh, Felix L. Sheng, Morgan Huganir, Richard L. Cell Rep Article Synapses in the brain exhibit cell-type-specific differences in basal synaptic transmission and plasticity. Here, we evaluated cell-type-specific specializations in the composition of glutamatergic synapses, identifying Btbd11 as an inhibitory interneuron-specific, synapse-enriched protein. Btbd11 is highly conserved across species and binds to core postsynaptic proteins, including Psd-95. Intriguingly, we show that Btbd11 can undergo liquid-liquid phase separation when expressed with Psd-95, supporting the idea that the glutamatergic postsynaptic density in synapses in inhibitory interneurons exists in a phase-separated state. Knockout of Btbd11 decreased glutamatergic signaling onto parvalbumin-positive interneurons. Further, both in vitro and in vivo, Btbd11 knockout disrupts network activity. At the behavioral level, Btbd11 knockout from interneurons alters exploratory behavior, measures of anxiety, and sensitizes mice to pharmacologically induced hyperactivity following NMDA receptor antagonist challenge. Our findings identify a cell-type-specific mechanism that supports glutamatergic synapse function in inhibitory interneurons—with implications for circuit function and animal behavior. 2023-06-27 2023-05-31 /pmc/articles/PMC10592477/ /pubmed/37261953 http://dx.doi.org/10.1016/j.celrep.2023.112591 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ).
spellingShingle Article
Bygrave, Alexei M.
Sengupta, Ayesha
Jackert, Ella P.
Ahmed, Mehroz
Adenuga, Beloved
Nelson, Erik
Goldschmidt, Hana L.
Johnson, Richard C.
Zhong, Haining
Yeh, Felix L.
Sheng, Morgan
Huganir, Richard L.
Btbd11 supports cell-type-specific synaptic function
title Btbd11 supports cell-type-specific synaptic function
title_full Btbd11 supports cell-type-specific synaptic function
title_fullStr Btbd11 supports cell-type-specific synaptic function
title_full_unstemmed Btbd11 supports cell-type-specific synaptic function
title_short Btbd11 supports cell-type-specific synaptic function
title_sort btbd11 supports cell-type-specific synaptic function
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592477/
https://www.ncbi.nlm.nih.gov/pubmed/37261953
http://dx.doi.org/10.1016/j.celrep.2023.112591
work_keys_str_mv AT bygravealexeim btbd11supportscelltypespecificsynapticfunction
AT senguptaayesha btbd11supportscelltypespecificsynapticfunction
AT jackertellap btbd11supportscelltypespecificsynapticfunction
AT ahmedmehroz btbd11supportscelltypespecificsynapticfunction
AT adenugabeloved btbd11supportscelltypespecificsynapticfunction
AT nelsonerik btbd11supportscelltypespecificsynapticfunction
AT goldschmidthanal btbd11supportscelltypespecificsynapticfunction
AT johnsonrichardc btbd11supportscelltypespecificsynapticfunction
AT zhonghaining btbd11supportscelltypespecificsynapticfunction
AT yehfelixl btbd11supportscelltypespecificsynapticfunction
AT shengmorgan btbd11supportscelltypespecificsynapticfunction
AT huganirrichardl btbd11supportscelltypespecificsynapticfunction