Cargando…
G6PD Maintains Redox Homeostasis and Biosynthesis in LKB1-Deficient KRAS-Driven Lung Cancer
Cancer cells depend on nicotinamide adenine dinucleotide phosphate (NADPH) to combat oxidative stress and support reductive biosynthesis. One major NAPDH production route is the oxidative pentose phosphate pathway (committed step: glucose-6-phosphate dehydrogenase, G6PD). Alternatives exist and can...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592603/ https://www.ncbi.nlm.nih.gov/pubmed/37873106 http://dx.doi.org/10.1101/2023.10.06.561131 |
_version_ | 1785124317363699712 |
---|---|
author | Lan, Taijin Arastu, Sara Wang, Samuel Lam, Jarrick Wang, Wenping Bhatt, Vrushank Lopes, Eduardo Cararo Hu, Zhixian Sun, Michael Luo, Xuefei Ghergurovich, Jonathan M. Li, Changlong Su, Xiaoyang Rabinowitz, Joshua D. White, Eileen Guo, Jessie Yanxiang |
author_facet | Lan, Taijin Arastu, Sara Wang, Samuel Lam, Jarrick Wang, Wenping Bhatt, Vrushank Lopes, Eduardo Cararo Hu, Zhixian Sun, Michael Luo, Xuefei Ghergurovich, Jonathan M. Li, Changlong Su, Xiaoyang Rabinowitz, Joshua D. White, Eileen Guo, Jessie Yanxiang |
author_sort | Lan, Taijin |
collection | PubMed |
description | Cancer cells depend on nicotinamide adenine dinucleotide phosphate (NADPH) to combat oxidative stress and support reductive biosynthesis. One major NAPDH production route is the oxidative pentose phosphate pathway (committed step: glucose-6-phosphate dehydrogenase, G6PD). Alternatives exist and can compensate in some tumors. Here, using genetically-engineered lung cancer model, we show that ablation of G6PD significantly suppresses Kras(G12D/+);Lkb1(−/−) (KL) but not Kras(G12D/+);p53(−/−) (KP) lung tumorigenesis. In vivo isotope tracing and metabolomics revealed that G6PD ablation significantly impaired NADPH generation, redox balance and de novo lipogenesis in KL but not KP lung tumors. Mechanistically, in KL tumors, G6PD ablation caused p53 activation that suppressed tumor growth. As tumor progressed, G6PD-deficient KL tumors increased an alternative NADPH source, serine-driven one carbon metabolism, rendering associated tumor-derived cell lines sensitive to serine/glycine depletion. Thus, oncogenic driver mutations determine lung cancer dependence on G6PD, whose targeting is a potential therapeutic strategy for tumors harboring KRAS and LKB1 co-mutations. |
format | Online Article Text |
id | pubmed-10592603 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-105926032023-10-24 G6PD Maintains Redox Homeostasis and Biosynthesis in LKB1-Deficient KRAS-Driven Lung Cancer Lan, Taijin Arastu, Sara Wang, Samuel Lam, Jarrick Wang, Wenping Bhatt, Vrushank Lopes, Eduardo Cararo Hu, Zhixian Sun, Michael Luo, Xuefei Ghergurovich, Jonathan M. Li, Changlong Su, Xiaoyang Rabinowitz, Joshua D. White, Eileen Guo, Jessie Yanxiang bioRxiv Article Cancer cells depend on nicotinamide adenine dinucleotide phosphate (NADPH) to combat oxidative stress and support reductive biosynthesis. One major NAPDH production route is the oxidative pentose phosphate pathway (committed step: glucose-6-phosphate dehydrogenase, G6PD). Alternatives exist and can compensate in some tumors. Here, using genetically-engineered lung cancer model, we show that ablation of G6PD significantly suppresses Kras(G12D/+);Lkb1(−/−) (KL) but not Kras(G12D/+);p53(−/−) (KP) lung tumorigenesis. In vivo isotope tracing and metabolomics revealed that G6PD ablation significantly impaired NADPH generation, redox balance and de novo lipogenesis in KL but not KP lung tumors. Mechanistically, in KL tumors, G6PD ablation caused p53 activation that suppressed tumor growth. As tumor progressed, G6PD-deficient KL tumors increased an alternative NADPH source, serine-driven one carbon metabolism, rendering associated tumor-derived cell lines sensitive to serine/glycine depletion. Thus, oncogenic driver mutations determine lung cancer dependence on G6PD, whose targeting is a potential therapeutic strategy for tumors harboring KRAS and LKB1 co-mutations. Cold Spring Harbor Laboratory 2023-10-09 /pmc/articles/PMC10592603/ /pubmed/37873106 http://dx.doi.org/10.1101/2023.10.06.561131 Text en https://creativecommons.org/licenses/by-nc/4.0/It is made available under aCC-BY-NC 4.0 International license. |
spellingShingle | Article Lan, Taijin Arastu, Sara Wang, Samuel Lam, Jarrick Wang, Wenping Bhatt, Vrushank Lopes, Eduardo Cararo Hu, Zhixian Sun, Michael Luo, Xuefei Ghergurovich, Jonathan M. Li, Changlong Su, Xiaoyang Rabinowitz, Joshua D. White, Eileen Guo, Jessie Yanxiang G6PD Maintains Redox Homeostasis and Biosynthesis in LKB1-Deficient KRAS-Driven Lung Cancer |
title | G6PD Maintains Redox Homeostasis and Biosynthesis in LKB1-Deficient KRAS-Driven Lung Cancer |
title_full | G6PD Maintains Redox Homeostasis and Biosynthesis in LKB1-Deficient KRAS-Driven Lung Cancer |
title_fullStr | G6PD Maintains Redox Homeostasis and Biosynthesis in LKB1-Deficient KRAS-Driven Lung Cancer |
title_full_unstemmed | G6PD Maintains Redox Homeostasis and Biosynthesis in LKB1-Deficient KRAS-Driven Lung Cancer |
title_short | G6PD Maintains Redox Homeostasis and Biosynthesis in LKB1-Deficient KRAS-Driven Lung Cancer |
title_sort | g6pd maintains redox homeostasis and biosynthesis in lkb1-deficient kras-driven lung cancer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592603/ https://www.ncbi.nlm.nih.gov/pubmed/37873106 http://dx.doi.org/10.1101/2023.10.06.561131 |
work_keys_str_mv | AT lantaijin g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer AT arastusara g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer AT wangsamuel g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer AT lamjarrick g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer AT wangwenping g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer AT bhattvrushank g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer AT lopeseduardocararo g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer AT huzhixian g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer AT sunmichael g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer AT luoxuefei g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer AT ghergurovichjonathanm g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer AT lichanglong g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer AT suxiaoyang g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer AT rabinowitzjoshuad g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer AT whiteeileen g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer AT guojessieyanxiang g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer |