Cargando…

G6PD Maintains Redox Homeostasis and Biosynthesis in LKB1-Deficient KRAS-Driven Lung Cancer

Cancer cells depend on nicotinamide adenine dinucleotide phosphate (NADPH) to combat oxidative stress and support reductive biosynthesis. One major NAPDH production route is the oxidative pentose phosphate pathway (committed step: glucose-6-phosphate dehydrogenase, G6PD). Alternatives exist and can...

Descripción completa

Detalles Bibliográficos
Autores principales: Lan, Taijin, Arastu, Sara, Wang, Samuel, Lam, Jarrick, Wang, Wenping, Bhatt, Vrushank, Lopes, Eduardo Cararo, Hu, Zhixian, Sun, Michael, Luo, Xuefei, Ghergurovich, Jonathan M., Li, Changlong, Su, Xiaoyang, Rabinowitz, Joshua D., White, Eileen, Guo, Jessie Yanxiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592603/
https://www.ncbi.nlm.nih.gov/pubmed/37873106
http://dx.doi.org/10.1101/2023.10.06.561131
_version_ 1785124317363699712
author Lan, Taijin
Arastu, Sara
Wang, Samuel
Lam, Jarrick
Wang, Wenping
Bhatt, Vrushank
Lopes, Eduardo Cararo
Hu, Zhixian
Sun, Michael
Luo, Xuefei
Ghergurovich, Jonathan M.
Li, Changlong
Su, Xiaoyang
Rabinowitz, Joshua D.
White, Eileen
Guo, Jessie Yanxiang
author_facet Lan, Taijin
Arastu, Sara
Wang, Samuel
Lam, Jarrick
Wang, Wenping
Bhatt, Vrushank
Lopes, Eduardo Cararo
Hu, Zhixian
Sun, Michael
Luo, Xuefei
Ghergurovich, Jonathan M.
Li, Changlong
Su, Xiaoyang
Rabinowitz, Joshua D.
White, Eileen
Guo, Jessie Yanxiang
author_sort Lan, Taijin
collection PubMed
description Cancer cells depend on nicotinamide adenine dinucleotide phosphate (NADPH) to combat oxidative stress and support reductive biosynthesis. One major NAPDH production route is the oxidative pentose phosphate pathway (committed step: glucose-6-phosphate dehydrogenase, G6PD). Alternatives exist and can compensate in some tumors. Here, using genetically-engineered lung cancer model, we show that ablation of G6PD significantly suppresses Kras(G12D/+);Lkb1(−/−) (KL) but not Kras(G12D/+);p53(−/−) (KP) lung tumorigenesis. In vivo isotope tracing and metabolomics revealed that G6PD ablation significantly impaired NADPH generation, redox balance and de novo lipogenesis in KL but not KP lung tumors. Mechanistically, in KL tumors, G6PD ablation caused p53 activation that suppressed tumor growth. As tumor progressed, G6PD-deficient KL tumors increased an alternative NADPH source, serine-driven one carbon metabolism, rendering associated tumor-derived cell lines sensitive to serine/glycine depletion. Thus, oncogenic driver mutations determine lung cancer dependence on G6PD, whose targeting is a potential therapeutic strategy for tumors harboring KRAS and LKB1 co-mutations.
format Online
Article
Text
id pubmed-10592603
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-105926032023-10-24 G6PD Maintains Redox Homeostasis and Biosynthesis in LKB1-Deficient KRAS-Driven Lung Cancer Lan, Taijin Arastu, Sara Wang, Samuel Lam, Jarrick Wang, Wenping Bhatt, Vrushank Lopes, Eduardo Cararo Hu, Zhixian Sun, Michael Luo, Xuefei Ghergurovich, Jonathan M. Li, Changlong Su, Xiaoyang Rabinowitz, Joshua D. White, Eileen Guo, Jessie Yanxiang bioRxiv Article Cancer cells depend on nicotinamide adenine dinucleotide phosphate (NADPH) to combat oxidative stress and support reductive biosynthesis. One major NAPDH production route is the oxidative pentose phosphate pathway (committed step: glucose-6-phosphate dehydrogenase, G6PD). Alternatives exist and can compensate in some tumors. Here, using genetically-engineered lung cancer model, we show that ablation of G6PD significantly suppresses Kras(G12D/+);Lkb1(−/−) (KL) but not Kras(G12D/+);p53(−/−) (KP) lung tumorigenesis. In vivo isotope tracing and metabolomics revealed that G6PD ablation significantly impaired NADPH generation, redox balance and de novo lipogenesis in KL but not KP lung tumors. Mechanistically, in KL tumors, G6PD ablation caused p53 activation that suppressed tumor growth. As tumor progressed, G6PD-deficient KL tumors increased an alternative NADPH source, serine-driven one carbon metabolism, rendering associated tumor-derived cell lines sensitive to serine/glycine depletion. Thus, oncogenic driver mutations determine lung cancer dependence on G6PD, whose targeting is a potential therapeutic strategy for tumors harboring KRAS and LKB1 co-mutations. Cold Spring Harbor Laboratory 2023-10-09 /pmc/articles/PMC10592603/ /pubmed/37873106 http://dx.doi.org/10.1101/2023.10.06.561131 Text en https://creativecommons.org/licenses/by-nc/4.0/It is made available under aCC-BY-NC 4.0 International license.
spellingShingle Article
Lan, Taijin
Arastu, Sara
Wang, Samuel
Lam, Jarrick
Wang, Wenping
Bhatt, Vrushank
Lopes, Eduardo Cararo
Hu, Zhixian
Sun, Michael
Luo, Xuefei
Ghergurovich, Jonathan M.
Li, Changlong
Su, Xiaoyang
Rabinowitz, Joshua D.
White, Eileen
Guo, Jessie Yanxiang
G6PD Maintains Redox Homeostasis and Biosynthesis in LKB1-Deficient KRAS-Driven Lung Cancer
title G6PD Maintains Redox Homeostasis and Biosynthesis in LKB1-Deficient KRAS-Driven Lung Cancer
title_full G6PD Maintains Redox Homeostasis and Biosynthesis in LKB1-Deficient KRAS-Driven Lung Cancer
title_fullStr G6PD Maintains Redox Homeostasis and Biosynthesis in LKB1-Deficient KRAS-Driven Lung Cancer
title_full_unstemmed G6PD Maintains Redox Homeostasis and Biosynthesis in LKB1-Deficient KRAS-Driven Lung Cancer
title_short G6PD Maintains Redox Homeostasis and Biosynthesis in LKB1-Deficient KRAS-Driven Lung Cancer
title_sort g6pd maintains redox homeostasis and biosynthesis in lkb1-deficient kras-driven lung cancer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592603/
https://www.ncbi.nlm.nih.gov/pubmed/37873106
http://dx.doi.org/10.1101/2023.10.06.561131
work_keys_str_mv AT lantaijin g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer
AT arastusara g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer
AT wangsamuel g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer
AT lamjarrick g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer
AT wangwenping g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer
AT bhattvrushank g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer
AT lopeseduardocararo g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer
AT huzhixian g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer
AT sunmichael g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer
AT luoxuefei g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer
AT ghergurovichjonathanm g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer
AT lichanglong g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer
AT suxiaoyang g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer
AT rabinowitzjoshuad g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer
AT whiteeileen g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer
AT guojessieyanxiang g6pdmaintainsredoxhomeostasisandbiosynthesisinlkb1deficientkrasdrivenlungcancer