Cargando…

Hippocampal mechanisms resolve competition in memory and perception

Behaving adaptively requires selection of relevant memories and sensations and suppression of competing ones. We hypothesized that these mechanisms are linked, such that hippocampal computations that resolve competition in memory also shape the precision of sensory representations to guide selective...

Descripción completa

Detalles Bibliográficos
Autores principales: Favila, Serra E., Aly, Mariam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592663/
https://www.ncbi.nlm.nih.gov/pubmed/37873400
http://dx.doi.org/10.1101/2023.10.09.561548
Descripción
Sumario:Behaving adaptively requires selection of relevant memories and sensations and suppression of competing ones. We hypothesized that these mechanisms are linked, such that hippocampal computations that resolve competition in memory also shape the precision of sensory representations to guide selective attention. We leveraged f MRI-based pattern similarity, receptive field modeling, and eye tracking to test this hypothesis in humans performing a memory-dependent visual search task. In the hippocampus, differentiation of competing memories predicted the precision of memory-guided eye movements. In visual cortex, preparatory coding of remembered target locations predicted search successes, whereas preparatory coding of competing locations predicted search failures due to interference. These effects were linked: stronger hippocampal memory differentiation was associated with lower competitor activation in visual cortex, yielding more precise preparatory representations. These results demonstrate a role for memory differentiation in shaping the precision of sensory representations, highlighting links between mechanisms that overcome competition in memory and perception.