Cargando…
Scaling cross-tissue single-cell annotation models
Identifying cellular identities (both novel and well-studied) is one of the key use cases in single-cell transcriptomics. While supervised machine learning has been leveraged to automate cell annotation predictions for some time, there has been relatively little progress both in scaling neural netwo...
Autores principales: | Fischer, Felix, Fischer, David S., Biederstedt, Evan, Villani, Alexandra-Chloé, Theis, Fabian J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592700/ https://www.ncbi.nlm.nih.gov/pubmed/37873298 http://dx.doi.org/10.1101/2023.10.07.561331 |
Ejemplares similares
-
Modeling intercellular communication in tissues using spatial graphs of cells
por: Fischer, David S., et al.
Publicado: (2022) -
Toward modeling metabolic state from single-cell transcriptomics
por: Hrovatin, Karin, et al.
Publicado: (2021) -
Predicting antigen specificity of single T cells based on TCR CDR3 regions
por: Fischer, David S, et al.
Publicado: (2020) -
Automatic identification of relevant genes from low-dimensional embeddings of single-cell RNA-seq data
por: Angerer, Philipp, et al.
Publicado: (2020) -
Sfaira accelerates data and model reuse in single cell genomics
por: Fischer, David S., et al.
Publicado: (2021)