Cargando…
Training biologically plausible recurrent neural networks on cognitive tasks with long-term dependencies
Training recurrent neural networks (RNNs) has become a go-to approach for generating and evaluating mechanistic neural hypotheses for cognition. The ease and efficiency of training RNNs with backpropagation through time and the availability of robustly supported deep learning libraries has made RNN...
Autores principales: | Soo, Wayne W.M., Goudar, Vishwa, Wang, Xiao-Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592728/ https://www.ncbi.nlm.nih.gov/pubmed/37873445 http://dx.doi.org/10.1101/2023.10.10.561588 |
Ejemplares similares
-
Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks
por: Miconi, Thomas
Publicado: (2017) -
Biologically Plausible Class Discrimination Based Recurrent Neural Network Training for Motor Pattern Generation
por: Wijesinghe, Parami, et al.
Publicado: (2020) -
Encoding sensory and motor patterns as time-invariant trajectories in recurrent neural networks
por: Goudar, Vishwa, et al.
Publicado: (2018) -
A biologically plausible learning rule for the Infomax on recurrent neural networks
por: Hayakawa, Takashi, et al.
Publicado: (2014) -
Plausible neural networks for biological modelling
por: Mastebroek, Henk, et al.
Publicado: (2001)