Cargando…

DeMixSC: a deconvolution framework that uses single-cell sequencing plus a small benchmark dataset for improved analysis of cell-type ratios in complex tissue samples

Bulk deconvolution with single-cell/nucleus RNA-seq data is critical for understanding heterogeneity in complex biological samples, yet the technological discrepancy across sequencing platforms limits deconvolution accuracy. To address this, we introduce an experimental design to match inter-platfor...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Shuai, Liu, Xiaoqian, Cheng, Xuesen, Jiang, Yujie, Ji, Shuangxi, Liang, Qingnan, Koval, Andrew, Li, Yumei, Owen, Leah A., Kim, Ivana K., Aparicio, Ana, Shen, John Paul, Kopetz, Scott, Weinstein, John N., DeAngelis, Margaret M., Chen, Rui, Wang, Wenyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592762/
https://www.ncbi.nlm.nih.gov/pubmed/37873318
http://dx.doi.org/10.1101/2023.10.10.561733
_version_ 1785145986703687680
author Guo, Shuai
Liu, Xiaoqian
Cheng, Xuesen
Jiang, Yujie
Ji, Shuangxi
Liang, Qingnan
Koval, Andrew
Li, Yumei
Owen, Leah A.
Kim, Ivana K.
Aparicio, Ana
Shen, John Paul
Kopetz, Scott
Weinstein, John N.
DeAngelis, Margaret M.
Chen, Rui
Wang, Wenyi
author_facet Guo, Shuai
Liu, Xiaoqian
Cheng, Xuesen
Jiang, Yujie
Ji, Shuangxi
Liang, Qingnan
Koval, Andrew
Li, Yumei
Owen, Leah A.
Kim, Ivana K.
Aparicio, Ana
Shen, John Paul
Kopetz, Scott
Weinstein, John N.
DeAngelis, Margaret M.
Chen, Rui
Wang, Wenyi
author_sort Guo, Shuai
collection PubMed
description Bulk deconvolution with single-cell/nucleus RNA-seq data is critical for understanding heterogeneity in complex biological samples, yet the technological discrepancy across sequencing platforms limits deconvolution accuracy. To address this, we introduce an experimental design to match inter-platform biological signals, hence revealing the technological discrepancy, and then develop a deconvolution framework called DeMixSC using the better-matched, i.e., benchmark, data. Built upon a novel weighted nonnegative least-squares framework, DeMixSC identifies and adjusts genes with high technological discrepancy and aligns the benchmark data with large patient cohorts of matched-tissue-type for large-scale deconvolution. Our results using a benchmark dataset of healthy retinas suggest much-improved deconvolution accuracy. Further analysis of a cohort of 453 patients with age-related macular degeneration supports the broad applicability of DeMixSC. Our findings reveal the impact of technological discrepancy on deconvolution performance and underscore the importance of a well-matched dataset to resolve this challenge. The developed DeMixSC framework is generally applicable for deconvolving large cohorts of disease tissues, and potentially cancer.
format Online
Article
Text
id pubmed-10592762
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-105927622023-11-14 DeMixSC: a deconvolution framework that uses single-cell sequencing plus a small benchmark dataset for improved analysis of cell-type ratios in complex tissue samples Guo, Shuai Liu, Xiaoqian Cheng, Xuesen Jiang, Yujie Ji, Shuangxi Liang, Qingnan Koval, Andrew Li, Yumei Owen, Leah A. Kim, Ivana K. Aparicio, Ana Shen, John Paul Kopetz, Scott Weinstein, John N. DeAngelis, Margaret M. Chen, Rui Wang, Wenyi bioRxiv Article Bulk deconvolution with single-cell/nucleus RNA-seq data is critical for understanding heterogeneity in complex biological samples, yet the technological discrepancy across sequencing platforms limits deconvolution accuracy. To address this, we introduce an experimental design to match inter-platform biological signals, hence revealing the technological discrepancy, and then develop a deconvolution framework called DeMixSC using the better-matched, i.e., benchmark, data. Built upon a novel weighted nonnegative least-squares framework, DeMixSC identifies and adjusts genes with high technological discrepancy and aligns the benchmark data with large patient cohorts of matched-tissue-type for large-scale deconvolution. Our results using a benchmark dataset of healthy retinas suggest much-improved deconvolution accuracy. Further analysis of a cohort of 453 patients with age-related macular degeneration supports the broad applicability of DeMixSC. Our findings reveal the impact of technological discrepancy on deconvolution performance and underscore the importance of a well-matched dataset to resolve this challenge. The developed DeMixSC framework is generally applicable for deconvolving large cohorts of disease tissues, and potentially cancer. Cold Spring Harbor Laboratory 2023-11-11 /pmc/articles/PMC10592762/ /pubmed/37873318 http://dx.doi.org/10.1101/2023.10.10.561733 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Guo, Shuai
Liu, Xiaoqian
Cheng, Xuesen
Jiang, Yujie
Ji, Shuangxi
Liang, Qingnan
Koval, Andrew
Li, Yumei
Owen, Leah A.
Kim, Ivana K.
Aparicio, Ana
Shen, John Paul
Kopetz, Scott
Weinstein, John N.
DeAngelis, Margaret M.
Chen, Rui
Wang, Wenyi
DeMixSC: a deconvolution framework that uses single-cell sequencing plus a small benchmark dataset for improved analysis of cell-type ratios in complex tissue samples
title DeMixSC: a deconvolution framework that uses single-cell sequencing plus a small benchmark dataset for improved analysis of cell-type ratios in complex tissue samples
title_full DeMixSC: a deconvolution framework that uses single-cell sequencing plus a small benchmark dataset for improved analysis of cell-type ratios in complex tissue samples
title_fullStr DeMixSC: a deconvolution framework that uses single-cell sequencing plus a small benchmark dataset for improved analysis of cell-type ratios in complex tissue samples
title_full_unstemmed DeMixSC: a deconvolution framework that uses single-cell sequencing plus a small benchmark dataset for improved analysis of cell-type ratios in complex tissue samples
title_short DeMixSC: a deconvolution framework that uses single-cell sequencing plus a small benchmark dataset for improved analysis of cell-type ratios in complex tissue samples
title_sort demixsc: a deconvolution framework that uses single-cell sequencing plus a small benchmark dataset for improved analysis of cell-type ratios in complex tissue samples
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592762/
https://www.ncbi.nlm.nih.gov/pubmed/37873318
http://dx.doi.org/10.1101/2023.10.10.561733
work_keys_str_mv AT guoshuai demixscadeconvolutionframeworkthatusessinglecellsequencingplusasmallbenchmarkdatasetforimprovedanalysisofcelltyperatiosincomplextissuesamples
AT liuxiaoqian demixscadeconvolutionframeworkthatusessinglecellsequencingplusasmallbenchmarkdatasetforimprovedanalysisofcelltyperatiosincomplextissuesamples
AT chengxuesen demixscadeconvolutionframeworkthatusessinglecellsequencingplusasmallbenchmarkdatasetforimprovedanalysisofcelltyperatiosincomplextissuesamples
AT jiangyujie demixscadeconvolutionframeworkthatusessinglecellsequencingplusasmallbenchmarkdatasetforimprovedanalysisofcelltyperatiosincomplextissuesamples
AT jishuangxi demixscadeconvolutionframeworkthatusessinglecellsequencingplusasmallbenchmarkdatasetforimprovedanalysisofcelltyperatiosincomplextissuesamples
AT liangqingnan demixscadeconvolutionframeworkthatusessinglecellsequencingplusasmallbenchmarkdatasetforimprovedanalysisofcelltyperatiosincomplextissuesamples
AT kovalandrew demixscadeconvolutionframeworkthatusessinglecellsequencingplusasmallbenchmarkdatasetforimprovedanalysisofcelltyperatiosincomplextissuesamples
AT liyumei demixscadeconvolutionframeworkthatusessinglecellsequencingplusasmallbenchmarkdatasetforimprovedanalysisofcelltyperatiosincomplextissuesamples
AT owenleaha demixscadeconvolutionframeworkthatusessinglecellsequencingplusasmallbenchmarkdatasetforimprovedanalysisofcelltyperatiosincomplextissuesamples
AT kimivanak demixscadeconvolutionframeworkthatusessinglecellsequencingplusasmallbenchmarkdatasetforimprovedanalysisofcelltyperatiosincomplextissuesamples
AT aparicioana demixscadeconvolutionframeworkthatusessinglecellsequencingplusasmallbenchmarkdatasetforimprovedanalysisofcelltyperatiosincomplextissuesamples
AT shenjohnpaul demixscadeconvolutionframeworkthatusessinglecellsequencingplusasmallbenchmarkdatasetforimprovedanalysisofcelltyperatiosincomplextissuesamples
AT kopetzscott demixscadeconvolutionframeworkthatusessinglecellsequencingplusasmallbenchmarkdatasetforimprovedanalysisofcelltyperatiosincomplextissuesamples
AT weinsteinjohnn demixscadeconvolutionframeworkthatusessinglecellsequencingplusasmallbenchmarkdatasetforimprovedanalysisofcelltyperatiosincomplextissuesamples
AT deangelismargaretm demixscadeconvolutionframeworkthatusessinglecellsequencingplusasmallbenchmarkdatasetforimprovedanalysisofcelltyperatiosincomplextissuesamples
AT chenrui demixscadeconvolutionframeworkthatusessinglecellsequencingplusasmallbenchmarkdatasetforimprovedanalysisofcelltyperatiosincomplextissuesamples
AT wangwenyi demixscadeconvolutionframeworkthatusessinglecellsequencingplusasmallbenchmarkdatasetforimprovedanalysisofcelltyperatiosincomplextissuesamples