Cargando…
PhyGCN: Pre-trained Hypergraph Convolutional Neural Networks with Self-supervised Learning
Hypergraphs are powerful tools for modeling complex interactions across various domains, including biomedicine. However, learning meaningful node representations from hypergraphs remains a challenge. Existing supervised methods often lack generalizability, thereby limiting their real-world applicati...
Autores principales: | Deng, Yihe, Zhang, Ruochi, Xu, Pan, Ma, Jian, Gu, Quanquan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592843/ https://www.ncbi.nlm.nih.gov/pubmed/37873233 http://dx.doi.org/10.1101/2023.10.01.560404 |
Ejemplares similares
-
An Evolving Hypergraph Convolutional Network for the Diagnosis of Alzheimer’s Disease
por: Wang, Xinlei, et al.
Publicado: (2022) -
Spatial-temporal hypergraph convolutional network for traffic forecasting
por: Zhao, Zhenzhen, et al.
Publicado: (2023) -
Training Deep Spiking Convolutional Neural Networks With STDP-Based Unsupervised Pre-training Followed by Supervised Fine-Tuning
por: Lee, Chankyu, et al.
Publicado: (2018) -
Drug Repositioning Based on the Enhanced Message Passing and Hypergraph Convolutional Networks
por: Huang, Weihong, et al.
Publicado: (2022) -
Non-uniform Evolving Hypergraphs and Weighted Evolving Hypergraphs
por: Guo, Jin-Li, et al.
Publicado: (2016)