Cargando…

Spiral NeuroString: High-Density Soft Bioelectronic Fibers for Multimodal Sensing and Stimulation

Bioelectronic fibers hold promise for both research and clinical applications due to their compactness, ease of implantation, and ability to incorporate various functionalities such as sensing and stimulation. However, existing devices suffer from bulkiness, rigidity, limited functionality, and low...

Descripción completa

Detalles Bibliográficos
Autores principales: Khatib, Muhammad, Zhao, Eric Tianjiao, Wei, Shiyuan, Abramson, Alex, Bishop, Estelle Spear, Chen, Chih-Hsin, Thomas, Anne-Laure, Xu, Chengyi, Park, Jaeho, Lee, Yeongjun, Hamnett, Ryan, Yu, Weilai, Root, Samuel E., Yuan, Lei, Chakhtoura, Dorine, Kim, Kyun Kyu, Zhong, Donglai, Nishio, Yuya, Zhao, Chuanzhen, Wu, Can, Jiang, Yuanwen, Zhang, Anqi, Li, Jinxing, Wang, Weichen, Salimi-Jazi, Fereshteh, Rafeeqi, Talha A., Hemed, Nofar Mintz, Tok, Jeffrey B.-H., Chen, Xiaoke, Kaltschmidt, Julia A., Dunn, James C.Y., Bao, Zhenan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592902/
https://www.ncbi.nlm.nih.gov/pubmed/37873341
http://dx.doi.org/10.1101/2023.10.02.560482
_version_ 1785124361975365632
author Khatib, Muhammad
Zhao, Eric Tianjiao
Wei, Shiyuan
Abramson, Alex
Bishop, Estelle Spear
Chen, Chih-Hsin
Thomas, Anne-Laure
Xu, Chengyi
Park, Jaeho
Lee, Yeongjun
Hamnett, Ryan
Yu, Weilai
Root, Samuel E.
Yuan, Lei
Chakhtoura, Dorine
Kim, Kyun Kyu
Zhong, Donglai
Nishio, Yuya
Zhao, Chuanzhen
Wu, Can
Jiang, Yuanwen
Zhang, Anqi
Li, Jinxing
Wang, Weichen
Salimi-Jazi, Fereshteh
Rafeeqi, Talha A.
Hemed, Nofar Mintz
Tok, Jeffrey B.-H.
Chen, Xiaoke
Kaltschmidt, Julia A.
Dunn, James C.Y.
Bao, Zhenan
author_facet Khatib, Muhammad
Zhao, Eric Tianjiao
Wei, Shiyuan
Abramson, Alex
Bishop, Estelle Spear
Chen, Chih-Hsin
Thomas, Anne-Laure
Xu, Chengyi
Park, Jaeho
Lee, Yeongjun
Hamnett, Ryan
Yu, Weilai
Root, Samuel E.
Yuan, Lei
Chakhtoura, Dorine
Kim, Kyun Kyu
Zhong, Donglai
Nishio, Yuya
Zhao, Chuanzhen
Wu, Can
Jiang, Yuanwen
Zhang, Anqi
Li, Jinxing
Wang, Weichen
Salimi-Jazi, Fereshteh
Rafeeqi, Talha A.
Hemed, Nofar Mintz
Tok, Jeffrey B.-H.
Chen, Xiaoke
Kaltschmidt, Julia A.
Dunn, James C.Y.
Bao, Zhenan
author_sort Khatib, Muhammad
collection PubMed
description Bioelectronic fibers hold promise for both research and clinical applications due to their compactness, ease of implantation, and ability to incorporate various functionalities such as sensing and stimulation. However, existing devices suffer from bulkiness, rigidity, limited functionality, and low density of active components. These limitations stem from the difficulty to incorporate many components on one-dimensional (1D) fiber devices due to the incompatibility of conventional microfabrication methods (e.g., photolithography) with curved, thin and long fiber structures. Herein, we introduce a fabrication approach, ‶spiral transformation″, to convert two-dimensional (2D) films containing microfabricated devices into 1D soft fibers. This approach allows for the creation of high density multimodal soft bioelectronic fibers, termed Spiral NeuroString (S-NeuroString), while enabling precise control over the longitudinal, angular, and radial positioning and distribution of the functional components. We show the utility of S-NeuroString for motility mapping, serotonin sensing, and tissue stimulation within the dynamic and soft gastrointestinal (GI) system, as well as for single-unit recordings in the brain. The described bioelectronic fibers hold great promises for next-generation multifunctional implantable electronics.
format Online
Article
Text
id pubmed-10592902
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-105929022023-10-24 Spiral NeuroString: High-Density Soft Bioelectronic Fibers for Multimodal Sensing and Stimulation Khatib, Muhammad Zhao, Eric Tianjiao Wei, Shiyuan Abramson, Alex Bishop, Estelle Spear Chen, Chih-Hsin Thomas, Anne-Laure Xu, Chengyi Park, Jaeho Lee, Yeongjun Hamnett, Ryan Yu, Weilai Root, Samuel E. Yuan, Lei Chakhtoura, Dorine Kim, Kyun Kyu Zhong, Donglai Nishio, Yuya Zhao, Chuanzhen Wu, Can Jiang, Yuanwen Zhang, Anqi Li, Jinxing Wang, Weichen Salimi-Jazi, Fereshteh Rafeeqi, Talha A. Hemed, Nofar Mintz Tok, Jeffrey B.-H. Chen, Xiaoke Kaltschmidt, Julia A. Dunn, James C.Y. Bao, Zhenan bioRxiv Article Bioelectronic fibers hold promise for both research and clinical applications due to their compactness, ease of implantation, and ability to incorporate various functionalities such as sensing and stimulation. However, existing devices suffer from bulkiness, rigidity, limited functionality, and low density of active components. These limitations stem from the difficulty to incorporate many components on one-dimensional (1D) fiber devices due to the incompatibility of conventional microfabrication methods (e.g., photolithography) with curved, thin and long fiber structures. Herein, we introduce a fabrication approach, ‶spiral transformation″, to convert two-dimensional (2D) films containing microfabricated devices into 1D soft fibers. This approach allows for the creation of high density multimodal soft bioelectronic fibers, termed Spiral NeuroString (S-NeuroString), while enabling precise control over the longitudinal, angular, and radial positioning and distribution of the functional components. We show the utility of S-NeuroString for motility mapping, serotonin sensing, and tissue stimulation within the dynamic and soft gastrointestinal (GI) system, as well as for single-unit recordings in the brain. The described bioelectronic fibers hold great promises for next-generation multifunctional implantable electronics. Cold Spring Harbor Laboratory 2023-10-03 /pmc/articles/PMC10592902/ /pubmed/37873341 http://dx.doi.org/10.1101/2023.10.02.560482 Text en https://creativecommons.org/licenses/by-nd/4.0/This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, and only so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
Khatib, Muhammad
Zhao, Eric Tianjiao
Wei, Shiyuan
Abramson, Alex
Bishop, Estelle Spear
Chen, Chih-Hsin
Thomas, Anne-Laure
Xu, Chengyi
Park, Jaeho
Lee, Yeongjun
Hamnett, Ryan
Yu, Weilai
Root, Samuel E.
Yuan, Lei
Chakhtoura, Dorine
Kim, Kyun Kyu
Zhong, Donglai
Nishio, Yuya
Zhao, Chuanzhen
Wu, Can
Jiang, Yuanwen
Zhang, Anqi
Li, Jinxing
Wang, Weichen
Salimi-Jazi, Fereshteh
Rafeeqi, Talha A.
Hemed, Nofar Mintz
Tok, Jeffrey B.-H.
Chen, Xiaoke
Kaltschmidt, Julia A.
Dunn, James C.Y.
Bao, Zhenan
Spiral NeuroString: High-Density Soft Bioelectronic Fibers for Multimodal Sensing and Stimulation
title Spiral NeuroString: High-Density Soft Bioelectronic Fibers for Multimodal Sensing and Stimulation
title_full Spiral NeuroString: High-Density Soft Bioelectronic Fibers for Multimodal Sensing and Stimulation
title_fullStr Spiral NeuroString: High-Density Soft Bioelectronic Fibers for Multimodal Sensing and Stimulation
title_full_unstemmed Spiral NeuroString: High-Density Soft Bioelectronic Fibers for Multimodal Sensing and Stimulation
title_short Spiral NeuroString: High-Density Soft Bioelectronic Fibers for Multimodal Sensing and Stimulation
title_sort spiral neurostring: high-density soft bioelectronic fibers for multimodal sensing and stimulation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592902/
https://www.ncbi.nlm.nih.gov/pubmed/37873341
http://dx.doi.org/10.1101/2023.10.02.560482
work_keys_str_mv AT khatibmuhammad spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT zhaoerictianjiao spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT weishiyuan spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT abramsonalex spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT bishopestellespear spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT chenchihhsin spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT thomasannelaure spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT xuchengyi spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT parkjaeho spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT leeyeongjun spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT hamnettryan spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT yuweilai spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT rootsamuele spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT yuanlei spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT chakhtouradorine spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT kimkyunkyu spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT zhongdonglai spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT nishioyuya spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT zhaochuanzhen spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT wucan spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT jiangyuanwen spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT zhanganqi spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT lijinxing spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT wangweichen spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT salimijazifereshteh spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT rafeeqitalhaa spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT hemednofarmintz spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT tokjeffreybh spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT chenxiaoke spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT kaltschmidtjuliaa spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT dunnjamescy spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation
AT baozhenan spiralneurostringhighdensitysoftbioelectronicfibersformultimodalsensingandstimulation