Cargando…

Human Striatal Association Megaclusters

The striatum receives projections from multiple regions of the cerebral cortex consistent with its role in diverse motor, affective, and cognitive functions. Supporting cognitive functions, the caudate receives projections from cortical association regions. Building on recent insights about the deta...

Descripción completa

Detalles Bibliográficos
Autores principales: Kosakowski, Heather L., Saadon-Grosman, Noam, Du, Jingnan, Eldaief, Mark E., Buckner, Randy L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592903/
https://www.ncbi.nlm.nih.gov/pubmed/37873093
http://dx.doi.org/10.1101/2023.10.03.560666
Descripción
Sumario:The striatum receives projections from multiple regions of the cerebral cortex consistent with its role in diverse motor, affective, and cognitive functions. Supporting cognitive functions, the caudate receives projections from cortical association regions. Building on recent insights about the details of how multiple cortical networks are specialized for distinct aspects of higher-order cognition, we revisited caudate organization using within-individual precision neuroimaging (n=2, each participant scanned 31 times). Detailed analysis revealed that the caudate has side-by-side zones that are coupled to at least Give distinct distributed association networks, paralleling the specialization observed in the cerebral cortex. Examining correlation maps from closely juxtaposed seed regions in the caudate recapitulated the Give distinct cerebral networks including their multiple spatially distributed regions. These results extend the general notion of parallel specialized basal ganglia circuits, with the additional discovery that even within the caudate, there is Gine-grained separation of multiple distinct higher-order networks.