Cargando…
Streptococcus agalactiae and Escherichia coli Induce Distinct Effector γδ T Cell Responses During Neonatal Sepsis and Neuroinflammation
The neonatal phase of life is a time during which susceptibility to infection is particularly high, with prematurely born neonates being especially vulnerable to life-threatening conditions such as bacterial sepsis. While Streptococcus agalactiae, also known as group B Streptococcus (GBS) and Escher...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592965/ https://www.ncbi.nlm.nih.gov/pubmed/37873122 http://dx.doi.org/10.1101/2023.10.02.560561 |
_version_ | 1785124371804717056 |
---|---|
author | Witt, Lila T. Greenfield, Kara G. Knoop, Kathryn A. |
author_facet | Witt, Lila T. Greenfield, Kara G. Knoop, Kathryn A. |
author_sort | Witt, Lila T. |
collection | PubMed |
description | The neonatal phase of life is a time during which susceptibility to infection is particularly high, with prematurely born neonates being especially vulnerable to life-threatening conditions such as bacterial sepsis. While Streptococcus agalactiae, also known as group B Streptococcus (GBS) and Escherichia coli are frequent causative pathogens of neonatal sepsis, it is still unclear how the neonatal adaptive immune system responds to these pathogens. In the present study, we find that γδ T cells in neonatal mice rapidly respond to single-organism sepsis infections of GBS and E. coli, and that these infections induce distinct activation and effector functions from IFN-γ and IL-17 producing γδ T cells, respectively. We also report differential reliance on γδTCR signaling to elicit effector cytokine responses during neonatal sepsis, with IL-17 production during E. coli sepsis being associated with TCR signaling, whereas IFN-γ production during GBS sepsis is TCR-independent. Furthermore, we report that the divergent effector responses of γδ during GBS and E. coli sepsis impart distinctive neuroinflammatory phenotypes on the neonatal brain. The present study sheds light on how the neonatal adaptive immune response responds differentially to bacterial stimuli and how these responses impact neonatal sepsis-associated neuroinflammation. |
format | Online Article Text |
id | pubmed-10592965 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-105929652023-10-24 Streptococcus agalactiae and Escherichia coli Induce Distinct Effector γδ T Cell Responses During Neonatal Sepsis and Neuroinflammation Witt, Lila T. Greenfield, Kara G. Knoop, Kathryn A. bioRxiv Article The neonatal phase of life is a time during which susceptibility to infection is particularly high, with prematurely born neonates being especially vulnerable to life-threatening conditions such as bacterial sepsis. While Streptococcus agalactiae, also known as group B Streptococcus (GBS) and Escherichia coli are frequent causative pathogens of neonatal sepsis, it is still unclear how the neonatal adaptive immune system responds to these pathogens. In the present study, we find that γδ T cells in neonatal mice rapidly respond to single-organism sepsis infections of GBS and E. coli, and that these infections induce distinct activation and effector functions from IFN-γ and IL-17 producing γδ T cells, respectively. We also report differential reliance on γδTCR signaling to elicit effector cytokine responses during neonatal sepsis, with IL-17 production during E. coli sepsis being associated with TCR signaling, whereas IFN-γ production during GBS sepsis is TCR-independent. Furthermore, we report that the divergent effector responses of γδ during GBS and E. coli sepsis impart distinctive neuroinflammatory phenotypes on the neonatal brain. The present study sheds light on how the neonatal adaptive immune response responds differentially to bacterial stimuli and how these responses impact neonatal sepsis-associated neuroinflammation. Cold Spring Harbor Laboratory 2023-10-03 /pmc/articles/PMC10592965/ /pubmed/37873122 http://dx.doi.org/10.1101/2023.10.02.560561 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Witt, Lila T. Greenfield, Kara G. Knoop, Kathryn A. Streptococcus agalactiae and Escherichia coli Induce Distinct Effector γδ T Cell Responses During Neonatal Sepsis and Neuroinflammation |
title | Streptococcus agalactiae and Escherichia coli Induce Distinct Effector γδ T Cell Responses During Neonatal Sepsis and Neuroinflammation |
title_full | Streptococcus agalactiae and Escherichia coli Induce Distinct Effector γδ T Cell Responses During Neonatal Sepsis and Neuroinflammation |
title_fullStr | Streptococcus agalactiae and Escherichia coli Induce Distinct Effector γδ T Cell Responses During Neonatal Sepsis and Neuroinflammation |
title_full_unstemmed | Streptococcus agalactiae and Escherichia coli Induce Distinct Effector γδ T Cell Responses During Neonatal Sepsis and Neuroinflammation |
title_short | Streptococcus agalactiae and Escherichia coli Induce Distinct Effector γδ T Cell Responses During Neonatal Sepsis and Neuroinflammation |
title_sort | streptococcus agalactiae and escherichia coli induce distinct effector γδ t cell responses during neonatal sepsis and neuroinflammation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592965/ https://www.ncbi.nlm.nih.gov/pubmed/37873122 http://dx.doi.org/10.1101/2023.10.02.560561 |
work_keys_str_mv | AT wittlilat streptococcusagalactiaeandescherichiacoliinducedistincteffectorgdtcellresponsesduringneonatalsepsisandneuroinflammation AT greenfieldkarag streptococcusagalactiaeandescherichiacoliinducedistincteffectorgdtcellresponsesduringneonatalsepsisandneuroinflammation AT knoopkathryna streptococcusagalactiaeandescherichiacoliinducedistincteffectorgdtcellresponsesduringneonatalsepsisandneuroinflammation |