Cargando…

Inferring Viral Transmission Pathways from Within-Host Variation

Genome sequencing can offer critical insight into pathogen spread in viral outbreaks, but existing transmission inference methods use simplistic evolutionary models and only incorporate a portion of available genetic data. Here, we develop a robust evolutionary model for transmission reconstruction...

Descripción completa

Detalles Bibliográficos
Autores principales: Specht, Ivan O. A., Petros, Brittany A., Moreno, Gage K., Brock-Fisher, Taylor, Krasilnikova, Lydia A., Schifferli, Mark, Yang, Katherine, Cronan, Paul, Glennon, Olivia, Schaffner, Stephen F., Park, Daniel J., MacInnis, Bronwyn L., Ozonoff, Al, Fry, Ben, Mitzenmacher, Michael D., Varilly, Patrick, Sabeti, Pardis C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593003/
https://www.ncbi.nlm.nih.gov/pubmed/37873325
http://dx.doi.org/10.1101/2023.10.14.23297039
_version_ 1785124377696665600
author Specht, Ivan O. A.
Petros, Brittany A.
Moreno, Gage K.
Brock-Fisher, Taylor
Krasilnikova, Lydia A.
Schifferli, Mark
Yang, Katherine
Cronan, Paul
Glennon, Olivia
Schaffner, Stephen F.
Park, Daniel J.
MacInnis, Bronwyn L.
Ozonoff, Al
Fry, Ben
Mitzenmacher, Michael D.
Varilly, Patrick
Sabeti, Pardis C.
author_facet Specht, Ivan O. A.
Petros, Brittany A.
Moreno, Gage K.
Brock-Fisher, Taylor
Krasilnikova, Lydia A.
Schifferli, Mark
Yang, Katherine
Cronan, Paul
Glennon, Olivia
Schaffner, Stephen F.
Park, Daniel J.
MacInnis, Bronwyn L.
Ozonoff, Al
Fry, Ben
Mitzenmacher, Michael D.
Varilly, Patrick
Sabeti, Pardis C.
author_sort Specht, Ivan O. A.
collection PubMed
description Genome sequencing can offer critical insight into pathogen spread in viral outbreaks, but existing transmission inference methods use simplistic evolutionary models and only incorporate a portion of available genetic data. Here, we develop a robust evolutionary model for transmission reconstruction that tracks the genetic composition of within-host viral populations over time and the lineages transmitted between hosts. We confirm that our model reliably describes within-host variant frequencies in a dataset of 134,682 SARS-CoV-2 deep-sequenced genomes from Massachusetts, USA. We then demonstrate that our reconstruction approach infers transmissions more accurately than two leading methods on synthetic data, as well as in a controlled outbreak of bovine respiratory syncytial virus and an epidemiologically-investigated SARS-CoV-2 outbreak in South Africa. Finally, we apply our transmission reconstruction tool to 5,692 outbreaks among the 134,682 Massachusetts genomes. Our methods and results demonstrate the utility of within-host variation for transmission inference of SARS-CoV-2 and other pathogens, and provide an adaptable mathematical framework for tracking within-host evolution.
format Online
Article
Text
id pubmed-10593003
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-105930032023-10-24 Inferring Viral Transmission Pathways from Within-Host Variation Specht, Ivan O. A. Petros, Brittany A. Moreno, Gage K. Brock-Fisher, Taylor Krasilnikova, Lydia A. Schifferli, Mark Yang, Katherine Cronan, Paul Glennon, Olivia Schaffner, Stephen F. Park, Daniel J. MacInnis, Bronwyn L. Ozonoff, Al Fry, Ben Mitzenmacher, Michael D. Varilly, Patrick Sabeti, Pardis C. medRxiv Article Genome sequencing can offer critical insight into pathogen spread in viral outbreaks, but existing transmission inference methods use simplistic evolutionary models and only incorporate a portion of available genetic data. Here, we develop a robust evolutionary model for transmission reconstruction that tracks the genetic composition of within-host viral populations over time and the lineages transmitted between hosts. We confirm that our model reliably describes within-host variant frequencies in a dataset of 134,682 SARS-CoV-2 deep-sequenced genomes from Massachusetts, USA. We then demonstrate that our reconstruction approach infers transmissions more accurately than two leading methods on synthetic data, as well as in a controlled outbreak of bovine respiratory syncytial virus and an epidemiologically-investigated SARS-CoV-2 outbreak in South Africa. Finally, we apply our transmission reconstruction tool to 5,692 outbreaks among the 134,682 Massachusetts genomes. Our methods and results demonstrate the utility of within-host variation for transmission inference of SARS-CoV-2 and other pathogens, and provide an adaptable mathematical framework for tracking within-host evolution. Cold Spring Harbor Laboratory 2023-10-15 /pmc/articles/PMC10593003/ /pubmed/37873325 http://dx.doi.org/10.1101/2023.10.14.23297039 Text en https://creativecommons.org/licenses/by-nc/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Specht, Ivan O. A.
Petros, Brittany A.
Moreno, Gage K.
Brock-Fisher, Taylor
Krasilnikova, Lydia A.
Schifferli, Mark
Yang, Katherine
Cronan, Paul
Glennon, Olivia
Schaffner, Stephen F.
Park, Daniel J.
MacInnis, Bronwyn L.
Ozonoff, Al
Fry, Ben
Mitzenmacher, Michael D.
Varilly, Patrick
Sabeti, Pardis C.
Inferring Viral Transmission Pathways from Within-Host Variation
title Inferring Viral Transmission Pathways from Within-Host Variation
title_full Inferring Viral Transmission Pathways from Within-Host Variation
title_fullStr Inferring Viral Transmission Pathways from Within-Host Variation
title_full_unstemmed Inferring Viral Transmission Pathways from Within-Host Variation
title_short Inferring Viral Transmission Pathways from Within-Host Variation
title_sort inferring viral transmission pathways from within-host variation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593003/
https://www.ncbi.nlm.nih.gov/pubmed/37873325
http://dx.doi.org/10.1101/2023.10.14.23297039
work_keys_str_mv AT spechtivanoa inferringviraltransmissionpathwaysfromwithinhostvariation
AT petrosbrittanya inferringviraltransmissionpathwaysfromwithinhostvariation
AT morenogagek inferringviraltransmissionpathwaysfromwithinhostvariation
AT brockfishertaylor inferringviraltransmissionpathwaysfromwithinhostvariation
AT krasilnikovalydiaa inferringviraltransmissionpathwaysfromwithinhostvariation
AT schifferlimark inferringviraltransmissionpathwaysfromwithinhostvariation
AT yangkatherine inferringviraltransmissionpathwaysfromwithinhostvariation
AT cronanpaul inferringviraltransmissionpathwaysfromwithinhostvariation
AT glennonolivia inferringviraltransmissionpathwaysfromwithinhostvariation
AT schaffnerstephenf inferringviraltransmissionpathwaysfromwithinhostvariation
AT parkdanielj inferringviraltransmissionpathwaysfromwithinhostvariation
AT macinnisbronwynl inferringviraltransmissionpathwaysfromwithinhostvariation
AT ozonoffal inferringviraltransmissionpathwaysfromwithinhostvariation
AT fryben inferringviraltransmissionpathwaysfromwithinhostvariation
AT mitzenmachermichaeld inferringviraltransmissionpathwaysfromwithinhostvariation
AT varillypatrick inferringviraltransmissionpathwaysfromwithinhostvariation
AT sabetipardisc inferringviraltransmissionpathwaysfromwithinhostvariation