Cargando…
Type 1 Diabetes Risk Phenotypes Using Cluster Analysis
BACKGROUND: Although statistical models for predicting type 1 diabetes risk have been developed, approaches that reveal clinically meaningful clusters in the at-risk population and allow for non-linear relationships between predictors are lacking. We aimed to identify and characterize clusters of is...
Autores principales: | You, Lu, Ferrat, Lauric A., Oram, Richard A., Parikh, Hemang M., Steck, Andrea K., Krischer, Jeffrey, Redondo, Maria J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593014/ https://www.ncbi.nlm.nih.gov/pubmed/37873281 http://dx.doi.org/10.1101/2023.10.10.23296375 |
Ejemplares similares
-
Logistic regression has similar performance to optimised machine learning algorithms in a clinical setting: application to the discrimination between type 1 and type 2 diabetes in young adults
por: Lynam, Anita L., et al.
Publicado: (2020) -
A Type 1 Diabetes Genetic Risk Score Predicts Progression of Islet Autoimmunity and Development of Type 1 Diabetes in Individuals at Risk
por: Redondo, Maria J., et al.
Publicado: (2018) -
Classifying dynamic transitions in high dimensional neural mass models: A random forest approach
por: Ferrat, Lauric A., et al.
Publicado: (2018) -
ISLET: individual-specific reference panel recovery improves cell-type-specific inference
por: Feng, Hao, et al.
Publicado: (2023) -
Plasma ascorbic acid and the risk of islet autoimmunity and type 1 diabetes: the TEDDY study
por: Mattila, Markus, et al.
Publicado: (2019)