Cargando…

Seroincidence of SARS-CoV-2 infection prior to and during the rollout of vaccines in a community-based prospective cohort of U.S. adults

BACKGROUND: Infectious disease surveillance systems, which largely rely on diagnosed cases, underestimate the true incidence of SARS-CoV-2 infection, due to under-ascertainment and underreporting. We used repeat serologic testing to measure N-protein seroconversion in a well-characterized cohort of...

Descripción completa

Detalles Bibliográficos
Autores principales: Nash, Denis, Srivastava, Avantika, Shen, Jenny, Penrose, Kate, Kulkarni, Sarah Gorrell, Zimba, Rebecca, You, William, Berry, Amanda, Mirzayi, Chloe, Maroko, Andrew, Parcesepe, Angela M., Grov, Christian, Robertson, McKaylee M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593054/
https://www.ncbi.nlm.nih.gov/pubmed/37873066
http://dx.doi.org/10.1101/2023.09.29.23296142
Descripción
Sumario:BACKGROUND: Infectious disease surveillance systems, which largely rely on diagnosed cases, underestimate the true incidence of SARS-CoV-2 infection, due to under-ascertainment and underreporting. We used repeat serologic testing to measure N-protein seroconversion in a well-characterized cohort of U.S. adults with no serologic evidence of SARS-CoV-2 infection to estimate the incidence of SARS-CoV-2 infection and characterize risk factors, with comparisons before and after the start of the SARS-CoV-2 vaccine and variant eras. METHODS: We assessed the incidence rate of infection and risk factors in two sub-groups (cohorts) that were SARS-CoV-2 N-protein seronegative at the start of each follow-up period: 1) the pre-vaccine/wild-type era cohort (n=3,421), followed from April to November 2020; and 2) the vaccine/variant era cohort (n=2,735), followed from November 2020 to June 2022. Both cohorts underwent repeat serologic testing with an assay for antibodies to the SARS-CoV-2 N protein (Bio-Rad Platelia SARS-CoV-2 total Ab). We estimated crude incidence and sociodemographic/epidemiologic risk factors in both cohorts. We used multivariate Poisson models to compare the risk of SARS-CoV-2 infection in the pre-vaccine/wild-type era cohort (referent group) to that in the vaccine/variant era cohort, within strata of vaccination status and epidemiologic risk factors (essential worker status, child in the household, case in the household, social distancing). FINDINGS: In the pre-vaccine/wild-type era cohort, only 18 of the 3,421 participants (0.53%) had ≥1 vaccine dose by the end of follow-up, compared with 2,497/2,735 (91.3%) in the vaccine/variant era cohort. We observed 323 and 815 seroconversions in the pre-vaccine/wild-type era and the vaccine/variant era and cohorts, respectively, with corresponding incidence rates of 9.6 (95% CI: 8.3–11.5) and 25.7 (95% CI: 24.2–27.3) per 100 person-years. Associations of sociodemographic and epidemiologic risk factors with SARS-CoV-2 incidence were largely similar in the pre-vaccine/wild-type and vaccine/variant era cohorts. However, some new epidemiologic risk factors emerged in the vaccine/variant era cohort, including having a child in the household, and never wearing a mask while using public transit. Adjusted incidence rate ratios (aIRR), with the entire pre-vaccine/wild-type era cohort as the referent group, showed markedly higher incidence in the vaccine/variant era cohort, but with more vaccine doses associated with lower incidence: aIRR(un/undervaccinated)=5.3 (95% CI: 4.2–6.7); aIRR(primary series only)=5.1 (95% CI: 4.2–7.3); aIRR(boosted once)=2.5 (95% CI: 2.1–3.0), and aIRR(boosted twice)=1.65 (95% CI: 1.3–2.1). These associations were essentially unchanged in risk factor-stratified models. INTERPRETATION: In SARS-CoV-2 N protein seronegative individuals, large increases in incidence and newly emerging epidemiologic risk factors in the vaccine/variant era likely resulted from multiple co-occurring factors, including policy changes, behavior changes, surges in transmission, and changes in SARS-CoV-2 variant properties. While SARS-CoV-2 incidence increased markedly in most groups in the vaccine/variant era, being up to date on vaccines and the use of non-pharmaceutical interventions (NPIs), such as masking and social distancing, remained reliable strategies to mitigate the risk of SARS-CoV-2 infection, even through major surges due to immune evasive variants. Repeat serologic testing in cohort studies is a useful and complementary strategy to characterize SARS-CoV-2 incidence and risk factors.