Cargando…
Antigenic drift and subtype interference shape A(H3N2) epidemic dynamics in the United States
Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability i...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593063/ https://www.ncbi.nlm.nih.gov/pubmed/37873362 http://dx.doi.org/10.1101/2023.10.02.23296453 |
_version_ | 1785124387704274944 |
---|---|
author | Perofsky, Amanda C Huddleston, John Hansen, Chelsea Barnes, John R Rowe, Thomas Xu, Xiyan Kondor, Rebecca Wentworth, David E Lewis, Nicola Whittaker, Lynne Ermetal, Burcu Harvey, Ruth Galiano, Monica Daniels, Rodney Stuart McCauley, John W Fujisaki, Seiichiro Nakamura, Kazuya Kishida, Noriko Watanabe, Shinji Hasegawa, Hideki Sullivan, Sheena G Barr, Ian G Subbarao, Kanta Krammer, Florian Bedford, Trevor Viboud, Cécile |
author_facet | Perofsky, Amanda C Huddleston, John Hansen, Chelsea Barnes, John R Rowe, Thomas Xu, Xiyan Kondor, Rebecca Wentworth, David E Lewis, Nicola Whittaker, Lynne Ermetal, Burcu Harvey, Ruth Galiano, Monica Daniels, Rodney Stuart McCauley, John W Fujisaki, Seiichiro Nakamura, Kazuya Kishida, Noriko Watanabe, Shinji Hasegawa, Hideki Sullivan, Sheena G Barr, Ian G Subbarao, Kanta Krammer, Florian Bedford, Trevor Viboud, Cécile |
author_sort | Perofsky, Amanda C |
collection | PubMed |
description | Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997—2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection dynamics, presumably via heterosubtypic cross-immunity. |
format | Online Article Text |
id | pubmed-10593063 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-105930632023-10-24 Antigenic drift and subtype interference shape A(H3N2) epidemic dynamics in the United States Perofsky, Amanda C Huddleston, John Hansen, Chelsea Barnes, John R Rowe, Thomas Xu, Xiyan Kondor, Rebecca Wentworth, David E Lewis, Nicola Whittaker, Lynne Ermetal, Burcu Harvey, Ruth Galiano, Monica Daniels, Rodney Stuart McCauley, John W Fujisaki, Seiichiro Nakamura, Kazuya Kishida, Noriko Watanabe, Shinji Hasegawa, Hideki Sullivan, Sheena G Barr, Ian G Subbarao, Kanta Krammer, Florian Bedford, Trevor Viboud, Cécile medRxiv Article Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997—2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection dynamics, presumably via heterosubtypic cross-immunity. Cold Spring Harbor Laboratory 2023-10-03 /pmc/articles/PMC10593063/ /pubmed/37873362 http://dx.doi.org/10.1101/2023.10.02.23296453 Text en https://creativecommons.org/publicdomain/zero/1.0/This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license (https://creativecommons.org/publicdomain/zero/1.0/) . |
spellingShingle | Article Perofsky, Amanda C Huddleston, John Hansen, Chelsea Barnes, John R Rowe, Thomas Xu, Xiyan Kondor, Rebecca Wentworth, David E Lewis, Nicola Whittaker, Lynne Ermetal, Burcu Harvey, Ruth Galiano, Monica Daniels, Rodney Stuart McCauley, John W Fujisaki, Seiichiro Nakamura, Kazuya Kishida, Noriko Watanabe, Shinji Hasegawa, Hideki Sullivan, Sheena G Barr, Ian G Subbarao, Kanta Krammer, Florian Bedford, Trevor Viboud, Cécile Antigenic drift and subtype interference shape A(H3N2) epidemic dynamics in the United States |
title | Antigenic drift and subtype interference shape A(H3N2) epidemic dynamics in the United States |
title_full | Antigenic drift and subtype interference shape A(H3N2) epidemic dynamics in the United States |
title_fullStr | Antigenic drift and subtype interference shape A(H3N2) epidemic dynamics in the United States |
title_full_unstemmed | Antigenic drift and subtype interference shape A(H3N2) epidemic dynamics in the United States |
title_short | Antigenic drift and subtype interference shape A(H3N2) epidemic dynamics in the United States |
title_sort | antigenic drift and subtype interference shape a(h3n2) epidemic dynamics in the united states |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593063/ https://www.ncbi.nlm.nih.gov/pubmed/37873362 http://dx.doi.org/10.1101/2023.10.02.23296453 |
work_keys_str_mv | AT perofskyamandac antigenicdriftandsubtypeinterferenceshapeah3n2epidemicdynamicsintheunitedstates AT huddlestonjohn antigenicdriftandsubtypeinterferenceshapeah3n2epidemicdynamicsintheunitedstates AT hansenchelsea antigenicdriftandsubtypeinterferenceshapeah3n2epidemicdynamicsintheunitedstates AT barnesjohnr antigenicdriftandsubtypeinterferenceshapeah3n2epidemicdynamicsintheunitedstates AT rowethomas antigenicdriftandsubtypeinterferenceshapeah3n2epidemicdynamicsintheunitedstates AT xuxiyan antigenicdriftandsubtypeinterferenceshapeah3n2epidemicdynamicsintheunitedstates AT kondorrebecca antigenicdriftandsubtypeinterferenceshapeah3n2epidemicdynamicsintheunitedstates AT wentworthdavide antigenicdriftandsubtypeinterferenceshapeah3n2epidemicdynamicsintheunitedstates AT lewisnicola antigenicdriftandsubtypeinterferenceshapeah3n2epidemicdynamicsintheunitedstates AT whittakerlynne antigenicdriftandsubtypeinterferenceshapeah3n2epidemicdynamicsintheunitedstates AT ermetalburcu antigenicdriftandsubtypeinterferenceshapeah3n2epidemicdynamicsintheunitedstates AT harveyruth antigenicdriftandsubtypeinterferenceshapeah3n2epidemicdynamicsintheunitedstates AT galianomonica antigenicdriftandsubtypeinterferenceshapeah3n2epidemicdynamicsintheunitedstates AT danielsrodneystuart antigenicdriftandsubtypeinterferenceshapeah3n2epidemicdynamicsintheunitedstates AT mccauleyjohnw antigenicdriftandsubtypeinterferenceshapeah3n2epidemicdynamicsintheunitedstates AT fujisakiseiichiro antigenicdriftandsubtypeinterferenceshapeah3n2epidemicdynamicsintheunitedstates AT nakamurakazuya antigenicdriftandsubtypeinterferenceshapeah3n2epidemicdynamicsintheunitedstates AT kishidanoriko antigenicdriftandsubtypeinterferenceshapeah3n2epidemicdynamicsintheunitedstates AT watanabeshinji antigenicdriftandsubtypeinterferenceshapeah3n2epidemicdynamicsintheunitedstates AT hasegawahideki antigenicdriftandsubtypeinterferenceshapeah3n2epidemicdynamicsintheunitedstates AT sullivansheenag antigenicdriftandsubtypeinterferenceshapeah3n2epidemicdynamicsintheunitedstates AT barriang antigenicdriftandsubtypeinterferenceshapeah3n2epidemicdynamicsintheunitedstates AT subbaraokanta antigenicdriftandsubtypeinterferenceshapeah3n2epidemicdynamicsintheunitedstates AT krammerflorian antigenicdriftandsubtypeinterferenceshapeah3n2epidemicdynamicsintheunitedstates AT bedfordtrevor antigenicdriftandsubtypeinterferenceshapeah3n2epidemicdynamicsintheunitedstates AT viboudcecile antigenicdriftandsubtypeinterferenceshapeah3n2epidemicdynamicsintheunitedstates |