Cargando…
Multi-View Variational Autoencoder for Missing Value Imputation in Untargeted Metabolomics
BACKGROUND: Missing data is a common challenge in mass spectrometry-based metabolomics, which can lead to biased and incomplete analyses. The integration of whole-genome sequencing (WGS) data with metabolomics data has emerged as a promising approach to enhance the accuracy of data imputation in met...
Autores principales: | Zhao, Chen, Su, Kuan-Jui, Wu, Chong, Cao, Xuewei, Sha, Qiuying, Li, Wu, Luo, Zhe, Qin, Tian, Qiu, Chuan, Zhao, Lan Juan, Liu, Anqi, Jiang, Lindong, Zhang, Xiao, Shen, Hui, Zhou, Weihua, Deng, Hong-Wen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593076/ https://www.ncbi.nlm.nih.gov/pubmed/37873011 |
Ejemplares similares
-
An autoencoder-based deep learning method for genotype imputation
por: Song, Meng, et al.
Publicado: (2022) -
A Workflow for Missing Values Imputation of Untargeted Metabolomics Data
por: Faquih, Tariq, et al.
Publicado: (2020) -
Denoising Autoencoder Normalization for Large-Scale Untargeted Metabolomics by Gas Chromatography–Mass Spectrometry
por: Zhang, Ying, et al.
Publicado: (2023) -
Sparse Convolutional Denoising Autoencoders for Genotype Imputation
por: Chen, Junjie, et al.
Publicado: (2019) -
AutoImpute: Autoencoder based imputation of single-cell RNA-seq data
por: Talwar, Divyanshu, et al.
Publicado: (2018)