Cargando…
EFFNet: A skin cancer classification model based on feature fusion and random forests
Computer-aided diagnosis techniques based on deep learning in skin cancer classification have disadvantages such as unbalanced datasets, redundant information in the extracted features and ignored interactions of partial features among different convolutional layers. In order to overcome these disad...
Autores principales: | Ma, Xiaopu, Shan, Jiangdan, Ning, Fei, Li, Wentao, Li, He |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593232/ https://www.ncbi.nlm.nih.gov/pubmed/37871038 http://dx.doi.org/10.1371/journal.pone.0293266 |
Ejemplares similares
-
EFFNet-CA: An Efficient Driver Distraction Detection Based on Multiscale Features Extractions and Channel Attention Mechanism
por: Khan, Taimoor, et al.
Publicado: (2023) -
Multiscale Feature Fusion for Skin Lesion Classification
por: Wang, Gang, et al.
Publicado: (2023) -
Assessment of Classification Models and Relevant Features on Nonalcoholic Steatohepatitis Using Random Forest
por: García-Carretero, Rafael, et al.
Publicado: (2021) -
Disease Classification Based on Eye Movement Features With Decision Tree and Random Forest
por: Mao, Yuxing, et al.
Publicado: (2020) -
A Random Forest Model for Peptide Classification Based on Virtual Docking Data
por: Feng, Hua, et al.
Publicado: (2023)