Cargando…
Validating the early phototherapy prediction tool across cohorts
BACKGROUND: Hyperbilirubinemia of the newborn infant is a common disease worldwide. However, recognized early and treated appropriately, it typically remains innocuous. We recently developed an early phototherapy prediction tool (EPPT) by means of machine learning (ML) utilizing just one bilirubin m...
Autores principales: | Daunhawer, Imant, Schumacher, Kai, Badura, Anna, Vogt, Julia E., Michel, Holger, Wellmann, Sven |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593448/ https://www.ncbi.nlm.nih.gov/pubmed/37876524 http://dx.doi.org/10.3389/fped.2023.1229462 |
Ejemplares similares
-
Pharmacometrics and Machine Learning Partner to Advance Clinical Data Analysis
por: Koch, Gilbert, et al.
Publicado: (2020) -
Using Machine Learning to Predict the Diagnosis, Management and Severity of Pediatric Appendicitis
por: Marcinkevics, Ricards, et al.
Publicado: (2021) -
The development and validation of a predictive model for neonatal phototherapy outcome using admission indicators
por: Liu, Qin, et al.
Publicado: (2022) -
Ectopic Atrial Tachycardia in a 12-Month-Old Girl Treated With Ivabradine and Beta-Blocker, a Case Report
por: Michel, Holger, et al.
Publicado: (2020) -
Higher ETCOc predicts longer phototherapy treatment in neonatal hyperbilirubinemia
por: Zhan, Yuan-Li, et al.
Publicado: (2023)