Cargando…

A geospatial database of close-to-reality travel times to obstetric emergency care in 15 Nigerian conurbations

Travel time estimation accounting for on-the-ground realities between the location where a need for emergency obstetric care (EmOC) arises and the health facility capable of providing EmOC is essential for improving pregnancy outcomes. Current understanding of travel time to care is inadequate in ma...

Descripción completa

Detalles Bibliográficos
Autores principales: Macharia, Peter M., Wong, Kerry L. M., Olubodun, Tope, Beňová, Lenka, Stanton, Charlotte, Sundararajan, Narayanan, Shah, Yash, Prasad, Gautam, Kansal, Mansi, Vispute, Swapnil, Shekel, Tomer, Gwacham-Anisiobi, Uchenna, Ogunyemi, Olakunmi, Wang, Jia, Abejirinde, Ibukun-Oluwa Omolade, Makanga, Prestige Tatenda, Afolabi, Bosede B., Banke-Thomas, Aduragbemi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593805/
https://www.ncbi.nlm.nih.gov/pubmed/37872185
http://dx.doi.org/10.1038/s41597-023-02651-9
_version_ 1785124510726356992
author Macharia, Peter M.
Wong, Kerry L. M.
Olubodun, Tope
Beňová, Lenka
Stanton, Charlotte
Sundararajan, Narayanan
Shah, Yash
Prasad, Gautam
Kansal, Mansi
Vispute, Swapnil
Shekel, Tomer
Gwacham-Anisiobi, Uchenna
Ogunyemi, Olakunmi
Wang, Jia
Abejirinde, Ibukun-Oluwa Omolade
Makanga, Prestige Tatenda
Afolabi, Bosede B.
Banke-Thomas, Aduragbemi
author_facet Macharia, Peter M.
Wong, Kerry L. M.
Olubodun, Tope
Beňová, Lenka
Stanton, Charlotte
Sundararajan, Narayanan
Shah, Yash
Prasad, Gautam
Kansal, Mansi
Vispute, Swapnil
Shekel, Tomer
Gwacham-Anisiobi, Uchenna
Ogunyemi, Olakunmi
Wang, Jia
Abejirinde, Ibukun-Oluwa Omolade
Makanga, Prestige Tatenda
Afolabi, Bosede B.
Banke-Thomas, Aduragbemi
author_sort Macharia, Peter M.
collection PubMed
description Travel time estimation accounting for on-the-ground realities between the location where a need for emergency obstetric care (EmOC) arises and the health facility capable of providing EmOC is essential for improving pregnancy outcomes. Current understanding of travel time to care is inadequate in many urban areas of Africa, where short distances obscure long travel times and travel times can vary by time of day and road conditions. Here, we describe a database of travel times to comprehensive EmOC facilities in the 15 most populated extended urban areas of Nigeria. The travel times from cells of approximately 0.6 × 0.6 km to facilities were derived from Google Maps Platform’s internal Directions Application Programming Interface, which incorporates traffic considerations to provide closer-to-reality travel time estimates. Computations were done to the first, second and third nearest public or private facilities. Travel time for eight traffic scenarios (including peak and non-peak periods) and number of facilities within specific time thresholds were estimated. The database offers a plethora of opportunities for research and planning towards improving EmOC accessibility.
format Online
Article
Text
id pubmed-10593805
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-105938052023-10-25 A geospatial database of close-to-reality travel times to obstetric emergency care in 15 Nigerian conurbations Macharia, Peter M. Wong, Kerry L. M. Olubodun, Tope Beňová, Lenka Stanton, Charlotte Sundararajan, Narayanan Shah, Yash Prasad, Gautam Kansal, Mansi Vispute, Swapnil Shekel, Tomer Gwacham-Anisiobi, Uchenna Ogunyemi, Olakunmi Wang, Jia Abejirinde, Ibukun-Oluwa Omolade Makanga, Prestige Tatenda Afolabi, Bosede B. Banke-Thomas, Aduragbemi Sci Data Data Descriptor Travel time estimation accounting for on-the-ground realities between the location where a need for emergency obstetric care (EmOC) arises and the health facility capable of providing EmOC is essential for improving pregnancy outcomes. Current understanding of travel time to care is inadequate in many urban areas of Africa, where short distances obscure long travel times and travel times can vary by time of day and road conditions. Here, we describe a database of travel times to comprehensive EmOC facilities in the 15 most populated extended urban areas of Nigeria. The travel times from cells of approximately 0.6 × 0.6 km to facilities were derived from Google Maps Platform’s internal Directions Application Programming Interface, which incorporates traffic considerations to provide closer-to-reality travel time estimates. Computations were done to the first, second and third nearest public or private facilities. Travel time for eight traffic scenarios (including peak and non-peak periods) and number of facilities within specific time thresholds were estimated. The database offers a plethora of opportunities for research and planning towards improving EmOC accessibility. Nature Publishing Group UK 2023-10-23 /pmc/articles/PMC10593805/ /pubmed/37872185 http://dx.doi.org/10.1038/s41597-023-02651-9 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Data Descriptor
Macharia, Peter M.
Wong, Kerry L. M.
Olubodun, Tope
Beňová, Lenka
Stanton, Charlotte
Sundararajan, Narayanan
Shah, Yash
Prasad, Gautam
Kansal, Mansi
Vispute, Swapnil
Shekel, Tomer
Gwacham-Anisiobi, Uchenna
Ogunyemi, Olakunmi
Wang, Jia
Abejirinde, Ibukun-Oluwa Omolade
Makanga, Prestige Tatenda
Afolabi, Bosede B.
Banke-Thomas, Aduragbemi
A geospatial database of close-to-reality travel times to obstetric emergency care in 15 Nigerian conurbations
title A geospatial database of close-to-reality travel times to obstetric emergency care in 15 Nigerian conurbations
title_full A geospatial database of close-to-reality travel times to obstetric emergency care in 15 Nigerian conurbations
title_fullStr A geospatial database of close-to-reality travel times to obstetric emergency care in 15 Nigerian conurbations
title_full_unstemmed A geospatial database of close-to-reality travel times to obstetric emergency care in 15 Nigerian conurbations
title_short A geospatial database of close-to-reality travel times to obstetric emergency care in 15 Nigerian conurbations
title_sort geospatial database of close-to-reality travel times to obstetric emergency care in 15 nigerian conurbations
topic Data Descriptor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593805/
https://www.ncbi.nlm.nih.gov/pubmed/37872185
http://dx.doi.org/10.1038/s41597-023-02651-9
work_keys_str_mv AT machariapeterm ageospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT wongkerrylm ageospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT oluboduntope ageospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT benovalenka ageospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT stantoncharlotte ageospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT sundararajannarayanan ageospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT shahyash ageospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT prasadgautam ageospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT kansalmansi ageospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT visputeswapnil ageospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT shekeltomer ageospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT gwachamanisiobiuchenna ageospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT ogunyemiolakunmi ageospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT wangjia ageospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT abejirindeibukunoluwaomolade ageospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT makangaprestigetatenda ageospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT afolabibosedeb ageospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT bankethomasaduragbemi ageospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT machariapeterm geospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT wongkerrylm geospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT oluboduntope geospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT benovalenka geospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT stantoncharlotte geospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT sundararajannarayanan geospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT shahyash geospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT prasadgautam geospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT kansalmansi geospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT visputeswapnil geospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT shekeltomer geospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT gwachamanisiobiuchenna geospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT ogunyemiolakunmi geospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT wangjia geospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT abejirindeibukunoluwaomolade geospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT makangaprestigetatenda geospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT afolabibosedeb geospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations
AT bankethomasaduragbemi geospatialdatabaseofclosetorealitytraveltimestoobstetricemergencycarein15nigerianconurbations