Cargando…

Temporal dynamics of statistical learning in children’s song contributes to phase entrainment and production of novel information in multiple cultures

Statistical learning is thought to be linked to brain development. For example, statistical learning of language and music starts at an early age and is shown to play a significant role in acquiring the delta-band rhythm that is essential for language and music learning. However, it remains unclear...

Descripción completa

Detalles Bibliográficos
Autor principal: Daikoku, Tatsuya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593840/
https://www.ncbi.nlm.nih.gov/pubmed/37872404
http://dx.doi.org/10.1038/s41598-023-45493-6
Descripción
Sumario:Statistical learning is thought to be linked to brain development. For example, statistical learning of language and music starts at an early age and is shown to play a significant role in acquiring the delta-band rhythm that is essential for language and music learning. However, it remains unclear how auditory cultural differences affect the statistical learning process and the resulting probabilistic and acoustic knowledge acquired through it. This study examined how children’s songs are acquired through statistical learning. This study used a Hierarchical Bayesian statistical learning (HBSL) model, mimicking the statistical learning processes of the brain. Using this model, I conducted a simulation experiment to visualize the temporal dynamics of perception and production processes through statistical learning among different cultures. The model learned from a corpus of children’s songs in MIDI format, which consists of English, German, Spanish, Japanese, and Korean songs as the training data. In this study, I investigated how the probability distribution of the model is transformed over 15 trials of learning in each song. Furthermore, using the probability distribution of each model over 15 trials of learning each song, new songs were probabilistically generated. The results suggested that, in learning processes, chunking and hierarchical knowledge increased gradually through 15 rounds of statistical learning for each piece of children’s songs. In production processes, statistical learning led to the gradual increase of delta-band rhythm (1–3 Hz). Furthermore, by combining the acquired chunks and hierarchy through statistical learning, statistically novel music was generated gradually in comparison to the original songs (i.e. the training songs). These findings were observed consistently, in multiple cultures. The present study indicated that the statistical learning capacity of the brain, in multiple cultures, contributes to the acquisition and generation of delta-band rhythm, which is critical for acquiring language and music. It is suggested that cultural differences may not significantly modulate the statistical learning effects since statistical learning and slower rhythm processing are both essential functions in the human brain across cultures. Furthermore, statistical learning of children’s songs leads to the acquisition of hierarchical knowledge and the ability to generate novel music. This study may provide a novel perspective on the developmental origins of creativity and the importance of statistical learning through early development.