Cargando…

A data-driven network decomposition of the temporal, spatial, and spectral dynamics underpinning visual-verbal working memory processes

The brain dynamics underlying working memory (WM) unroll via transient frequency-specific large-scale brain networks. This multidimensionality (time, space, and frequency) challenges traditional analyses. Through an unsupervised technique, the time delay embedded-hidden Markov model (TDE-HMM), we pu...

Descripción completa

Detalles Bibliográficos
Autores principales: Rossi, Chiara, Vidaurre, Diego, Costers, Lars, Akbarian, Fahimeh, Woolrich, Mark, Nagels, Guy, Van Schependom, Jeroen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593846/
https://www.ncbi.nlm.nih.gov/pubmed/37872313
http://dx.doi.org/10.1038/s42003-023-05448-z
_version_ 1785124520423587840
author Rossi, Chiara
Vidaurre, Diego
Costers, Lars
Akbarian, Fahimeh
Woolrich, Mark
Nagels, Guy
Van Schependom, Jeroen
author_facet Rossi, Chiara
Vidaurre, Diego
Costers, Lars
Akbarian, Fahimeh
Woolrich, Mark
Nagels, Guy
Van Schependom, Jeroen
author_sort Rossi, Chiara
collection PubMed
description The brain dynamics underlying working memory (WM) unroll via transient frequency-specific large-scale brain networks. This multidimensionality (time, space, and frequency) challenges traditional analyses. Through an unsupervised technique, the time delay embedded-hidden Markov model (TDE-HMM), we pursue a functional network analysis of magnetoencephalographic data from 38 healthy subjects acquired during an n-back task. Here we show that this model inferred task-specific networks with unique temporal (activation), spectral (phase-coupling connections), and spatial (power spectral density distribution) profiles. A theta frontoparietal network exerts attentional control and encodes the stimulus, an alpha temporo-occipital network rehearses the verbal information, and a broad-band frontoparietal network with a P300-like temporal profile leads the retrieval process and motor response. Therefore, this work provides a unified and integrated description of the multidimensional working memory dynamics that can be interpreted within the neuropsychological multi-component model of WM, improving the overall neurophysiological and neuropsychological comprehension of WM functioning.
format Online
Article
Text
id pubmed-10593846
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-105938462023-10-25 A data-driven network decomposition of the temporal, spatial, and spectral dynamics underpinning visual-verbal working memory processes Rossi, Chiara Vidaurre, Diego Costers, Lars Akbarian, Fahimeh Woolrich, Mark Nagels, Guy Van Schependom, Jeroen Commun Biol Article The brain dynamics underlying working memory (WM) unroll via transient frequency-specific large-scale brain networks. This multidimensionality (time, space, and frequency) challenges traditional analyses. Through an unsupervised technique, the time delay embedded-hidden Markov model (TDE-HMM), we pursue a functional network analysis of magnetoencephalographic data from 38 healthy subjects acquired during an n-back task. Here we show that this model inferred task-specific networks with unique temporal (activation), spectral (phase-coupling connections), and spatial (power spectral density distribution) profiles. A theta frontoparietal network exerts attentional control and encodes the stimulus, an alpha temporo-occipital network rehearses the verbal information, and a broad-band frontoparietal network with a P300-like temporal profile leads the retrieval process and motor response. Therefore, this work provides a unified and integrated description of the multidimensional working memory dynamics that can be interpreted within the neuropsychological multi-component model of WM, improving the overall neurophysiological and neuropsychological comprehension of WM functioning. Nature Publishing Group UK 2023-10-23 /pmc/articles/PMC10593846/ /pubmed/37872313 http://dx.doi.org/10.1038/s42003-023-05448-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Rossi, Chiara
Vidaurre, Diego
Costers, Lars
Akbarian, Fahimeh
Woolrich, Mark
Nagels, Guy
Van Schependom, Jeroen
A data-driven network decomposition of the temporal, spatial, and spectral dynamics underpinning visual-verbal working memory processes
title A data-driven network decomposition of the temporal, spatial, and spectral dynamics underpinning visual-verbal working memory processes
title_full A data-driven network decomposition of the temporal, spatial, and spectral dynamics underpinning visual-verbal working memory processes
title_fullStr A data-driven network decomposition of the temporal, spatial, and spectral dynamics underpinning visual-verbal working memory processes
title_full_unstemmed A data-driven network decomposition of the temporal, spatial, and spectral dynamics underpinning visual-verbal working memory processes
title_short A data-driven network decomposition of the temporal, spatial, and spectral dynamics underpinning visual-verbal working memory processes
title_sort data-driven network decomposition of the temporal, spatial, and spectral dynamics underpinning visual-verbal working memory processes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593846/
https://www.ncbi.nlm.nih.gov/pubmed/37872313
http://dx.doi.org/10.1038/s42003-023-05448-z
work_keys_str_mv AT rossichiara adatadrivennetworkdecompositionofthetemporalspatialandspectraldynamicsunderpinningvisualverbalworkingmemoryprocesses
AT vidaurrediego adatadrivennetworkdecompositionofthetemporalspatialandspectraldynamicsunderpinningvisualverbalworkingmemoryprocesses
AT costerslars adatadrivennetworkdecompositionofthetemporalspatialandspectraldynamicsunderpinningvisualverbalworkingmemoryprocesses
AT akbarianfahimeh adatadrivennetworkdecompositionofthetemporalspatialandspectraldynamicsunderpinningvisualverbalworkingmemoryprocesses
AT woolrichmark adatadrivennetworkdecompositionofthetemporalspatialandspectraldynamicsunderpinningvisualverbalworkingmemoryprocesses
AT nagelsguy adatadrivennetworkdecompositionofthetemporalspatialandspectraldynamicsunderpinningvisualverbalworkingmemoryprocesses
AT vanschependomjeroen adatadrivennetworkdecompositionofthetemporalspatialandspectraldynamicsunderpinningvisualverbalworkingmemoryprocesses
AT rossichiara datadrivennetworkdecompositionofthetemporalspatialandspectraldynamicsunderpinningvisualverbalworkingmemoryprocesses
AT vidaurrediego datadrivennetworkdecompositionofthetemporalspatialandspectraldynamicsunderpinningvisualverbalworkingmemoryprocesses
AT costerslars datadrivennetworkdecompositionofthetemporalspatialandspectraldynamicsunderpinningvisualverbalworkingmemoryprocesses
AT akbarianfahimeh datadrivennetworkdecompositionofthetemporalspatialandspectraldynamicsunderpinningvisualverbalworkingmemoryprocesses
AT woolrichmark datadrivennetworkdecompositionofthetemporalspatialandspectraldynamicsunderpinningvisualverbalworkingmemoryprocesses
AT nagelsguy datadrivennetworkdecompositionofthetemporalspatialandspectraldynamicsunderpinningvisualverbalworkingmemoryprocesses
AT vanschependomjeroen datadrivennetworkdecompositionofthetemporalspatialandspectraldynamicsunderpinningvisualverbalworkingmemoryprocesses