Cargando…

spatialMaxent: Adapting species distribution modeling to spatial data

Conventional practices in species distribution modeling lack predictive power when the spatial structure of data is not taken into account. However, choosing a modeling approach that accounts for overfitting during model training can improve predictive performance on spatially separated test data, l...

Descripción completa

Detalles Bibliográficos
Autores principales: Bald, Lisa, Gottwald, Jannis, Zeuss, Dirk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594137/
https://www.ncbi.nlm.nih.gov/pubmed/37881225
http://dx.doi.org/10.1002/ece3.10635
Descripción
Sumario:Conventional practices in species distribution modeling lack predictive power when the spatial structure of data is not taken into account. However, choosing a modeling approach that accounts for overfitting during model training can improve predictive performance on spatially separated test data, leading to more reliable models. This study introduces spatialMaxent (https://github.com/envima/spatialMaxent), a software that combines state‐of‐the‐art spatial modeling techniques with the popular species distribution modeling software Maxent. It includes forward‐variable‐selection, forward‐feature‐selection, and regularization‐multiplier tuning based on spatial cross‐validation, which enables addressing overfitting during model training by considering the impact of spatial dependency in the training data. We assessed the performance of spatialMaxent using the National Center for Ecological Analysis and Synthesis dataset, which contains over 200 anonymized species across six regions worldwide. Our results show that spatialMaxent outperforms both conventional Maxent and models optimized according to literature recommendations without using a spatial tuning strategy in 80 percent of the cases. spatialMaxent is user‐friendly and easily accessible to researchers, government authorities, and conservation practitioners. Therefore, it has the potential to play an important role in addressing pressing challenges of biodiversity conservation.