Cargando…
spatialMaxent: Adapting species distribution modeling to spatial data
Conventional practices in species distribution modeling lack predictive power when the spatial structure of data is not taken into account. However, choosing a modeling approach that accounts for overfitting during model training can improve predictive performance on spatially separated test data, l...
Autores principales: | Bald, Lisa, Gottwald, Jannis, Zeuss, Dirk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594137/ https://www.ncbi.nlm.nih.gov/pubmed/37881225 http://dx.doi.org/10.1002/ece3.10635 |
Ejemplares similares
-
Maxent modeling for predicting the spatial distribution of three raptors in the Sanjiangyuan National Park, China
por: Zhang, Jingjie, et al.
Publicado: (2019) -
Spatial distribution of Glossina morsitans (Diptera: Glossinidae) in Zambia: A vehicle-mounted sticky trap survey and Maxent species distribution model
por: Muyobela, Jackson, et al.
Publicado: (2023) -
Evaluation of Spatial Distribution of Three Major Leptocorisa (Hemiptera: Alydidae) Pests Using MaxEnt Model
por: Hwang, Jeong Ho, et al.
Publicado: (2022) -
The Effects of Sampling Bias and Model Complexity on the Predictive Performance of MaxEnt Species Distribution Models
por: Syfert, Mindy M., et al.
Publicado: (2013) -
Predicting the Distribution of the Invasive Species Leptocybe invasa: Combining MaxEnt and Geodetector Models
por: Zhang, Hua, et al.
Publicado: (2021)