Cargando…
Error detection and correction in intracortical brain–machine interfaces controlling two finger groups
Objective. While brain–machine interfaces (BMIs) are promising technologies that could provide direct pathways for controlling the external world and thus regaining motor capabilities, their effectiveness is hampered by decoding errors. Previous research has demonstrated the detection and correction...
Autores principales: | Wallace, Dylan M, Benyamini, Miri, Nason-Tomaszewski, Samuel R, Costello, Joseph T, Cubillos, Luis H, Mender, Matthew J, Temmar, Hisham, Willsey, Matthew S, Patil, Parag G, Chestek, Cynthia A, Zacksenhouse, Miriam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOP Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594236/ https://www.ncbi.nlm.nih.gov/pubmed/37567222 http://dx.doi.org/10.1088/1741-2552/acef95 |
Ejemplares similares
-
The impact of task context on predicting finger movements in a brain-machine interface
por: Mender, Matthew J, et al.
Publicado: (2023) -
Real-time brain-machine interface in non-human primates achieves high-velocity prosthetic finger movements using a shallow feedforward neural network decoder
por: Willsey, Matthew S., et al.
Publicado: (2022) -
Optimal feedback control successfully explains changes in neural modulations during experiments with brain-machine interfaces
por: Benyamini, Miri, et al.
Publicado: (2015) -
Intracortical Brain-Machine Interfaces Advance Sensorimotor Neuroscience
por: Schroeder, Karen E., et al.
Publicado: (2016) -
Shifts in Estimated Preferred Directions During Simulated BMI Experiments With No Adaptation
por: Benyamini, Miri, et al.
Publicado: (2021)