Cargando…

Intraperitoneal oxygen microbubble therapy: A novel approach to enhance systemic oxygenation in a smoke inhalation model of acute hypoxic respiratory failure

BACKGROUND: Patients suffering from severe acute respiratory distress syndrome (ARDS) face limited therapeutic options and alarmingly high mortality rates. Refractory hypoxemia, a hallmark of ARDS, often necessitates invasive and high-risk treatments. Oxygen microbubbles (OMB) present a promising ap...

Descripción completa

Detalles Bibliográficos
Autores principales: Leiphrakpam, Premila D., Weber, Hannah R., Foster, Kirk W., Buesing, Keely L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594636/
https://www.ncbi.nlm.nih.gov/pubmed/37881512
http://dx.doi.org/10.1016/j.sopen.2023.09.020
Descripción
Sumario:BACKGROUND: Patients suffering from severe acute respiratory distress syndrome (ARDS) face limited therapeutic options and alarmingly high mortality rates. Refractory hypoxemia, a hallmark of ARDS, often necessitates invasive and high-risk treatments. Oxygen microbubbles (OMB) present a promising approach for extrapulmonary oxygenation, potentially augmenting systemic oxygen levels without exposing patients to significant risks. METHODS: Rats with severe, acute hypoxemia secondary to wood smoke inhalation (SI) received intraperitoneal (IP) bolus injections of escalating weight-by-volume (BW/V) OMB doses or normal saline to determine optimal dosage and treatment efficacy. Subsequently, a 10 % BW/V OMB bolus or saline was administered to a group of SI rats and a control group of healthy rats (SHAM). Imaging, vital signs, and laboratory studies were compared at baseline, post-smoke inhalation, and post-treatment. Histological examination and lung tissue wet/dry weight ratios were assessed at study conclusion. RESULTS: Treatment with various OMB doses in SI-induced acute hypoxemia revealed that a 10 % BW/V OMB dose significantly augmented systemic oxygen levels while minimizing dose volume. The second set of studies demonstrated a significant increase in partial pressure of arterial oxygen (PaO2) and normalization of heart rate with OMB treatment in the SI group compared to saline treatment or control group treatment. CONCLUSIONS: This study highlights the successful augmentation of systemic oxygenation following OMB treatment in a small animal model of severe hypoxemia. OMB therapy emerges as a novel and promising treatment modality with immense translational potential for oxygenation support in acute care settings.