Cargando…

A novel technique of a new cannulated screw for treatment of inferior pole patellar fractures: a finite element study

OBJECTIVE: We invented a new cannulated screw with holes on the tail, which called Ding’s screw. The goal of this study was to evaluate the biomechanical outcomes of this new screw with tension band wiring for the treatment of inferior pole patellar fractures in a finite element model. METHODS: We c...

Descripción completa

Detalles Bibliográficos
Autores principales: Pan, Mingmang, Yin, Nuo, Du, Li, Xue, Feng, Shen, Yuchun, Ding, Liang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594702/
https://www.ncbi.nlm.nih.gov/pubmed/37875974
http://dx.doi.org/10.1186/s13018-023-04299-y
Descripción
Sumario:OBJECTIVE: We invented a new cannulated screw with holes on the tail, which called Ding’s screw. The goal of this study was to evaluate the biomechanical outcomes of this new screw with tension band wiring for the treatment of inferior pole patellar fractures in a finite element model. METHODS: We conducted a finite element biomechanical study using two fixation methods: Ding’s screw and tension band wiring (DSTBW) and cannulated screws and tension band wiring (CSTBW). Two methods were simulated to fix the inferior pole patellar fracture in a finite element model. The relative displacement and stress distribution were analyzed and compared. RESULT: There were less displacement and stress distribution of DSTBW in different knee movement (30°, 60°, 90°, 120°) when compared to CSTBW. The highest value of displacement of the fracture and von Mises stress of the internal fixation happened in 120° knee movement in both groups. The highest displacement of the DSTBW was less than that of the CSTBW (1.92 mm to 2.12 mm). The highest value of the stress on the screws was 110.60 MPa in DSTBW group, and 132.90 MPa in CSTBW group. The highest value of the stress on the titanium cable was 38.51 MPa in DSTBW group, and 41.91 MPa in CSTBW group. CONCLUSION: DSTBW fixation provides more stability than CSTBW fixation model in a finite element study.