Cargando…
CXCL10 deficiency limits macrophage infiltration, preserves lung matrix, and enables lung growth in bronchopulmonary dysplasia
Preterm infants with oxygen supplementation are at high risk for bronchopulmonary dysplasia (BPD), a neonatal chronic lung disease. Inflammation with macrophage activation is central to the pathogenesis of BPD. CXCL10, a chemotactic and pro-inflammatory chemokine, is elevated in the lungs of infants...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594718/ https://www.ncbi.nlm.nih.gov/pubmed/37876024 http://dx.doi.org/10.1186/s41232-023-00301-6 |
_version_ | 1785124707803070464 |
---|---|
author | Hirani, Dharmesh V. Thielen, Florian Mansouri, Siavash Danopoulos, Soula Vohlen, Christina Haznedar-Karakaya, Pinar Mohr, Jasmine Wilke, Rebecca Selle, Jaco Grosch, Thomas Mizik, Ivana Odenthal, Margarete Alvira, Cristina M. Kuiper-Makris, Celien Pryhuber, Gloria S. Pallasch, Christian van Koningsbruggen-Rietschel, S. Al-Alam, Denise Seeger, Werner Savai, Rajkumar Dötsch, Jörg Alejandre Alcazar, Miguel A. |
author_facet | Hirani, Dharmesh V. Thielen, Florian Mansouri, Siavash Danopoulos, Soula Vohlen, Christina Haznedar-Karakaya, Pinar Mohr, Jasmine Wilke, Rebecca Selle, Jaco Grosch, Thomas Mizik, Ivana Odenthal, Margarete Alvira, Cristina M. Kuiper-Makris, Celien Pryhuber, Gloria S. Pallasch, Christian van Koningsbruggen-Rietschel, S. Al-Alam, Denise Seeger, Werner Savai, Rajkumar Dötsch, Jörg Alejandre Alcazar, Miguel A. |
author_sort | Hirani, Dharmesh V. |
collection | PubMed |
description | Preterm infants with oxygen supplementation are at high risk for bronchopulmonary dysplasia (BPD), a neonatal chronic lung disease. Inflammation with macrophage activation is central to the pathogenesis of BPD. CXCL10, a chemotactic and pro-inflammatory chemokine, is elevated in the lungs of infants evolving BPD and in hyperoxia-based BPD in mice. Here, we tested if CXCL10 deficiency preserves lung growth after neonatal hyperoxia by preventing macrophage activation. To this end, we exposed Cxcl10 knockout (Cxcl10(−/−)) and wild-type mice to an experimental model of hyperoxia (85% O(2))-induced neonatal lung injury and subsequent regeneration. In addition, cultured primary human macrophages and murine macrophages (J744A.1) were treated with CXCL10 and/or CXCR3 antagonist. Our transcriptomic analysis identified CXCL10 as a central hub in the inflammatory network of neonatal mouse lungs after hyperoxia. Quantitative histomorphometric analysis revealed that Cxcl10(−/−) mice are in part protected from reduced alveolar. These findings were related to the preserved spatial distribution of elastic fibers, reduced collagen deposition, and protection from macrophage recruitment/infiltration to the lungs in Cxcl10(−/−) mice during acute injury and regeneration. Complimentary, studies with cultured human and murine macrophages showed that hyperoxia induces Cxcl10 expression that in turn triggers M1-like activation and migration of macrophages through CXCR3. Finally, we demonstrated a temporal increase of macrophage-related CXCL10 in the lungs of infants with BPD. In conclusion, our data demonstrate macrophage-derived CXCL10 in experimental and clinical BPD that drives macrophage chemotaxis through CXCR3, causing pro-fibrotic lung remodeling and arrest of alveolarization. Thus, targeting the CXCL10-CXCR3 axis could offer a new therapeutic avenue for BPD. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s41232-023-00301-6. |
format | Online Article Text |
id | pubmed-10594718 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-105947182023-10-25 CXCL10 deficiency limits macrophage infiltration, preserves lung matrix, and enables lung growth in bronchopulmonary dysplasia Hirani, Dharmesh V. Thielen, Florian Mansouri, Siavash Danopoulos, Soula Vohlen, Christina Haznedar-Karakaya, Pinar Mohr, Jasmine Wilke, Rebecca Selle, Jaco Grosch, Thomas Mizik, Ivana Odenthal, Margarete Alvira, Cristina M. Kuiper-Makris, Celien Pryhuber, Gloria S. Pallasch, Christian van Koningsbruggen-Rietschel, S. Al-Alam, Denise Seeger, Werner Savai, Rajkumar Dötsch, Jörg Alejandre Alcazar, Miguel A. Inflamm Regen Research Article Preterm infants with oxygen supplementation are at high risk for bronchopulmonary dysplasia (BPD), a neonatal chronic lung disease. Inflammation with macrophage activation is central to the pathogenesis of BPD. CXCL10, a chemotactic and pro-inflammatory chemokine, is elevated in the lungs of infants evolving BPD and in hyperoxia-based BPD in mice. Here, we tested if CXCL10 deficiency preserves lung growth after neonatal hyperoxia by preventing macrophage activation. To this end, we exposed Cxcl10 knockout (Cxcl10(−/−)) and wild-type mice to an experimental model of hyperoxia (85% O(2))-induced neonatal lung injury and subsequent regeneration. In addition, cultured primary human macrophages and murine macrophages (J744A.1) were treated with CXCL10 and/or CXCR3 antagonist. Our transcriptomic analysis identified CXCL10 as a central hub in the inflammatory network of neonatal mouse lungs after hyperoxia. Quantitative histomorphometric analysis revealed that Cxcl10(−/−) mice are in part protected from reduced alveolar. These findings were related to the preserved spatial distribution of elastic fibers, reduced collagen deposition, and protection from macrophage recruitment/infiltration to the lungs in Cxcl10(−/−) mice during acute injury and regeneration. Complimentary, studies with cultured human and murine macrophages showed that hyperoxia induces Cxcl10 expression that in turn triggers M1-like activation and migration of macrophages through CXCR3. Finally, we demonstrated a temporal increase of macrophage-related CXCL10 in the lungs of infants with BPD. In conclusion, our data demonstrate macrophage-derived CXCL10 in experimental and clinical BPD that drives macrophage chemotaxis through CXCR3, causing pro-fibrotic lung remodeling and arrest of alveolarization. Thus, targeting the CXCL10-CXCR3 axis could offer a new therapeutic avenue for BPD. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s41232-023-00301-6. BioMed Central 2023-10-24 /pmc/articles/PMC10594718/ /pubmed/37876024 http://dx.doi.org/10.1186/s41232-023-00301-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Hirani, Dharmesh V. Thielen, Florian Mansouri, Siavash Danopoulos, Soula Vohlen, Christina Haznedar-Karakaya, Pinar Mohr, Jasmine Wilke, Rebecca Selle, Jaco Grosch, Thomas Mizik, Ivana Odenthal, Margarete Alvira, Cristina M. Kuiper-Makris, Celien Pryhuber, Gloria S. Pallasch, Christian van Koningsbruggen-Rietschel, S. Al-Alam, Denise Seeger, Werner Savai, Rajkumar Dötsch, Jörg Alejandre Alcazar, Miguel A. CXCL10 deficiency limits macrophage infiltration, preserves lung matrix, and enables lung growth in bronchopulmonary dysplasia |
title | CXCL10 deficiency limits macrophage infiltration, preserves lung matrix, and enables lung growth in bronchopulmonary dysplasia |
title_full | CXCL10 deficiency limits macrophage infiltration, preserves lung matrix, and enables lung growth in bronchopulmonary dysplasia |
title_fullStr | CXCL10 deficiency limits macrophage infiltration, preserves lung matrix, and enables lung growth in bronchopulmonary dysplasia |
title_full_unstemmed | CXCL10 deficiency limits macrophage infiltration, preserves lung matrix, and enables lung growth in bronchopulmonary dysplasia |
title_short | CXCL10 deficiency limits macrophage infiltration, preserves lung matrix, and enables lung growth in bronchopulmonary dysplasia |
title_sort | cxcl10 deficiency limits macrophage infiltration, preserves lung matrix, and enables lung growth in bronchopulmonary dysplasia |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594718/ https://www.ncbi.nlm.nih.gov/pubmed/37876024 http://dx.doi.org/10.1186/s41232-023-00301-6 |
work_keys_str_mv | AT hiranidharmeshv cxcl10deficiencylimitsmacrophageinfiltrationpreserveslungmatrixandenableslunggrowthinbronchopulmonarydysplasia AT thielenflorian cxcl10deficiencylimitsmacrophageinfiltrationpreserveslungmatrixandenableslunggrowthinbronchopulmonarydysplasia AT mansourisiavash cxcl10deficiencylimitsmacrophageinfiltrationpreserveslungmatrixandenableslunggrowthinbronchopulmonarydysplasia AT danopoulossoula cxcl10deficiencylimitsmacrophageinfiltrationpreserveslungmatrixandenableslunggrowthinbronchopulmonarydysplasia AT vohlenchristina cxcl10deficiencylimitsmacrophageinfiltrationpreserveslungmatrixandenableslunggrowthinbronchopulmonarydysplasia AT haznedarkarakayapinar cxcl10deficiencylimitsmacrophageinfiltrationpreserveslungmatrixandenableslunggrowthinbronchopulmonarydysplasia AT mohrjasmine cxcl10deficiencylimitsmacrophageinfiltrationpreserveslungmatrixandenableslunggrowthinbronchopulmonarydysplasia AT wilkerebecca cxcl10deficiencylimitsmacrophageinfiltrationpreserveslungmatrixandenableslunggrowthinbronchopulmonarydysplasia AT sellejaco cxcl10deficiencylimitsmacrophageinfiltrationpreserveslungmatrixandenableslunggrowthinbronchopulmonarydysplasia AT groschthomas cxcl10deficiencylimitsmacrophageinfiltrationpreserveslungmatrixandenableslunggrowthinbronchopulmonarydysplasia AT mizikivana cxcl10deficiencylimitsmacrophageinfiltrationpreserveslungmatrixandenableslunggrowthinbronchopulmonarydysplasia AT odenthalmargarete cxcl10deficiencylimitsmacrophageinfiltrationpreserveslungmatrixandenableslunggrowthinbronchopulmonarydysplasia AT alviracristinam cxcl10deficiencylimitsmacrophageinfiltrationpreserveslungmatrixandenableslunggrowthinbronchopulmonarydysplasia AT kuipermakriscelien cxcl10deficiencylimitsmacrophageinfiltrationpreserveslungmatrixandenableslunggrowthinbronchopulmonarydysplasia AT pryhuberglorias cxcl10deficiencylimitsmacrophageinfiltrationpreserveslungmatrixandenableslunggrowthinbronchopulmonarydysplasia AT pallaschchristian cxcl10deficiencylimitsmacrophageinfiltrationpreserveslungmatrixandenableslunggrowthinbronchopulmonarydysplasia AT vankoningsbruggenrietschels cxcl10deficiencylimitsmacrophageinfiltrationpreserveslungmatrixandenableslunggrowthinbronchopulmonarydysplasia AT alalamdenise cxcl10deficiencylimitsmacrophageinfiltrationpreserveslungmatrixandenableslunggrowthinbronchopulmonarydysplasia AT seegerwerner cxcl10deficiencylimitsmacrophageinfiltrationpreserveslungmatrixandenableslunggrowthinbronchopulmonarydysplasia AT savairajkumar cxcl10deficiencylimitsmacrophageinfiltrationpreserveslungmatrixandenableslunggrowthinbronchopulmonarydysplasia AT dotschjorg cxcl10deficiencylimitsmacrophageinfiltrationpreserveslungmatrixandenableslunggrowthinbronchopulmonarydysplasia AT alejandrealcazarmiguela cxcl10deficiencylimitsmacrophageinfiltrationpreserveslungmatrixandenableslunggrowthinbronchopulmonarydysplasia |