Cargando…
LncRNA RP11-58O9.2 predicts poor prognosis and promotes progression of non-small cell lung cancer
OBJECTIVE: Long non-coding RNAs (lncRNAs) play a crucial role in non-small cell lung cancer (NSCLC). This study aimed to investigate the novel biomarker, lncRNA RP11-58O9.2, in patients with NSCLC. METHODS: RP11-58O9.2 expression in NSCLC cells and tissues was detected by reverse transcription-quant...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594974/ https://www.ncbi.nlm.nih.gov/pubmed/37871619 http://dx.doi.org/10.1177/03000605231206295 |
Sumario: | OBJECTIVE: Long non-coding RNAs (lncRNAs) play a crucial role in non-small cell lung cancer (NSCLC). This study aimed to investigate the novel biomarker, lncRNA RP11-58O9.2, in patients with NSCLC. METHODS: RP11-58O9.2 expression in NSCLC cells and tissues was detected by reverse transcription-quantitative polymerase chain reaction. Patient survival was analyzed in relation to RP11-58O9.2 expression levels. RP11-58O9.2 expression was knocked down and endogenous expression was verified in two NSCLC cell lines. Cell proliferation was then assessed by Cell Counting Kit-8 and colony-formation assays, and cell invasion and migration were assessed by Transwell and wound-healing assays, respectively. In vivo experiments were performed in mice, and the combination of RP11-58O9.2 and miR-6749-3p was predicted by miRanda. RESULTS: RP11-58O9.2 was highly expressed in NSCLC cell lines and tissues, and was associated with advanced stage, lymphatic metastasis, and differentiation group. High RP11-58O9.2 levels were also associated with shorter survival. RP11-58O9.2 knockdown inhibited the proliferation, invasion, and migration of lung cancer cells, and tumor growth in mouse xenografts in vivo. RP11-58O9.2 may target and regulate miR-6749-3p. CONCLUSIONS: LncRNA RP11-58O9.2 is associated with NSCLC prognosis and promotes lung cancer progression. Further studies are needed to investigate the mechanisms and the regulatory association between RP11-58O9.2 and miR-6749-3p. |
---|