Cargando…
Air pollution particulate matter (PM2.5) prediction in South African cities using machine learning techniques
BACKGROUND: Air pollution contributes to the most severe environmental and health problems due to industrial emissions and atmosphere contamination, produced by climate and traffic factors, fossil fuel combustion, and industrial characteristics. Because this is a global issue, several nations have e...
Autores principales: | Morapedi, Tshepang Duncan, Obagbuwa, Ibidun Christiana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10595005/ https://www.ncbi.nlm.nih.gov/pubmed/37881653 http://dx.doi.org/10.3389/frai.2023.1230087 |
Ejemplares similares
-
Supervised machine learning models for depression sentiment analysis
por: Obagbuwa, Ibidun Christiana, et al.
Publicado: (2023) -
Artificial intelligence-assisted air quality monitoring for smart city management
por: Neo, En Xin, et al.
Publicado: (2023) -
Impact of COVID-19 lockdown on air quality analyzed through machine learning techniques
por: Zukaib, Umer, et al.
Publicado: (2023) -
Machine Learning Approaches Reveal That the Number of Tests Do Not Matter to the Prediction of Global Confirmed COVID-19 Cases
por: Khan, Md Hasinur Rahaman, et al.
Publicado: (2020) -
Size Matters: Digital Social Networks and Language Change
por: Laitinen, Mikko, et al.
Publicado: (2020)