Cargando…
Vocal markers of schizophrenia: assessing the generalizability of machine learning models and their clinical applicability
INTRODUCTION: Machine learning (ML) approaches are a promising venue for identifying vocal markers of neuropsychiatric disorders, such as schizophrenia. While recent studies have shown that voice-based ML models can reliably predict diagnosis and clinical symptoms of schizophrenia, it is unclear to...
Autores principales: | Parola, A., Rybner, A., Jessen, E. T., Damsgaard Mortensen, M., Nyhus Larsen, S., Simonsen, A., Zhou, Y., Koelkebeck, K., Bliksted, V., Fusaroli, R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10596474/ http://dx.doi.org/10.1192/j.eurpsy.2023.444 |
Ejemplares similares
-
T138. ACOUSTIC PATTERNS IN SCHIZOPHRENIA: A SYSTEMATIC REVIEW AND META-ANALYSIS
por: Parola, Alberto, et al.
Publicado: (2018) -
S67. INTEGRATION OF SENSORY AND SOCIAL INFORMATION DURING DECISION MAKING IN SCHIZOPHRENIA
por: Simonsen, Arndis, et al.
Publicado: (2018) -
M248. VOICE PATTERNS IN SCHIZOPHRENIA: A CROSS-LINGUISTIC REPLICATION OF PREVIOUS META-ANALYTIC FINDINGS
por: Parola, Alberto, et al.
Publicado: (2020) -
Socially Learned Attitude Change is not reduced in Medicated Patients with Schizophrenia
por: Simonsen, Arndis, et al.
Publicado: (2019) -
Generalizability of machine learning for classification of schizophrenia based on resting‐state functional MRI data
por: Cai, Xin‐Lu, et al.
Publicado: (2019)