Cargando…
Machine learning classification by fitting amplicon sequences to existing OTUs
The ability to use 16S rRNA gene sequence data to train machine learning classification models offers the opportunity to diagnose patients based on the composition of their microbiome. In some applications, the taxonomic resolution that provides the best models may require the use of de novo operati...
Autores principales: | Armour, Courtney R., Sovacool, Kelly L., Close, William L., Topçuoğlu, Begüm D., Wiens, Jenna, Schloss, Patrick D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10597446/ https://www.ncbi.nlm.nih.gov/pubmed/37615431 http://dx.doi.org/10.1128/msphere.00336-23 |
Ejemplares similares
-
OptiFit: an Improved Method for Fitting Amplicon Sequences to Existing OTUs
por: Sovacool, Kelly L., et al.
Publicado: (2022) -
A Goldilocks Principle for the Gut Microbiome: Taxonomic Resolution Matters for Microbiome-Based Classification of Colorectal Cancer
por: Armour, Courtney R., et al.
Publicado: (2022) -
mikropml: User-Friendly R Package for Supervised Machine Learning Pipelines
por: Topçuoğlu, Begüm D., et al.
Publicado: (2021) -
A Framework for Effective Application of Machine Learning to Microbiome-Based Classification Problems
por: Topçuoğlu, Begüm D., et al.
Publicado: (2020) -
Amplicon Sequence Variants Artificially Split Bacterial Genomes into Separate Clusters
por: Schloss, Patrick D.
Publicado: (2021)