Cargando…
Thermal performance of Fe(3)O(4), SWCNT, MWCNT and H(2)O based on magnetohydrodynamic nanofluid flow across a wedge with significant impacts of Soret and Dufour
The Soret and Dufour effects have significant importance in several practical scenarios, especially in the domain of fluidic mass and temperature transfer. Nanofluidics, biological systems, and combustion processes are all areas where these consequences are crucial. Because of its distinct geometry,...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10597548/ https://www.ncbi.nlm.nih.gov/pubmed/37881705 http://dx.doi.org/10.1039/d3na00732d |
_version_ | 1785125366484959232 |
---|---|
author | Vinutha, K. Nagaraja, K. V. Sajjan, Kiran Khan, Umair Madhukesh, J. K. Kolli, Uma C. Muhammad, Taseer |
author_facet | Vinutha, K. Nagaraja, K. V. Sajjan, Kiran Khan, Umair Madhukesh, J. K. Kolli, Uma C. Muhammad, Taseer |
author_sort | Vinutha, K. |
collection | PubMed |
description | The Soret and Dufour effects have significant importance in several practical scenarios, especially in the domain of fluidic mass and temperature transfer. Nanofluidics, biological systems, and combustion processes are all areas where these consequences are crucial. Because of its distinct geometry, a wedge-shaped structure has aerodynamics, production, and engineering applications. Wedge shapes are used in aerodynamics for analyzing and improving airflow across various objects. Nanofluids increase thermal conductivity over traditional fluids making them ideal for cooling high-power electronics, boosting temperature transfer efficiencies, and boosting the solar energy system output. This work is of critical importance since it examines the consequences of a heat source/sink, the Soret impact and the Dufour impact, on the movement of a ternary nanofluid over a wedge. This work uses appropriate similarity constraints to reduce the complexity of the underlying governing equations, allowing for fast computational solutions with the Runge–Kutta–Fehlberg 4–5(th) order method (RKF-45). Analysis of these phenomena helps determine their possible real-world applications across various engineering fields, by presenting numerical results through plots. The results reveal that adjusting the moving wedge factor lessens the temperature profile, improving the magnetic constraint increases the velocity, and modifying the heat source/sink, Dufour, and Soret factors increases the temperature and concentration profiles. Dufour and heat source/sink constraints speed-up the heat transmission rate. In all cases, ternary nano liquids show significant performance over hybrid nano liquids. |
format | Online Article Text |
id | pubmed-10597548 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | RSC |
record_format | MEDLINE/PubMed |
spelling | pubmed-105975482023-10-25 Thermal performance of Fe(3)O(4), SWCNT, MWCNT and H(2)O based on magnetohydrodynamic nanofluid flow across a wedge with significant impacts of Soret and Dufour Vinutha, K. Nagaraja, K. V. Sajjan, Kiran Khan, Umair Madhukesh, J. K. Kolli, Uma C. Muhammad, Taseer Nanoscale Adv Chemistry The Soret and Dufour effects have significant importance in several practical scenarios, especially in the domain of fluidic mass and temperature transfer. Nanofluidics, biological systems, and combustion processes are all areas where these consequences are crucial. Because of its distinct geometry, a wedge-shaped structure has aerodynamics, production, and engineering applications. Wedge shapes are used in aerodynamics for analyzing and improving airflow across various objects. Nanofluids increase thermal conductivity over traditional fluids making them ideal for cooling high-power electronics, boosting temperature transfer efficiencies, and boosting the solar energy system output. This work is of critical importance since it examines the consequences of a heat source/sink, the Soret impact and the Dufour impact, on the movement of a ternary nanofluid over a wedge. This work uses appropriate similarity constraints to reduce the complexity of the underlying governing equations, allowing for fast computational solutions with the Runge–Kutta–Fehlberg 4–5(th) order method (RKF-45). Analysis of these phenomena helps determine their possible real-world applications across various engineering fields, by presenting numerical results through plots. The results reveal that adjusting the moving wedge factor lessens the temperature profile, improving the magnetic constraint increases the velocity, and modifying the heat source/sink, Dufour, and Soret factors increases the temperature and concentration profiles. Dufour and heat source/sink constraints speed-up the heat transmission rate. In all cases, ternary nano liquids show significant performance over hybrid nano liquids. RSC 2023-10-13 /pmc/articles/PMC10597548/ /pubmed/37881705 http://dx.doi.org/10.1039/d3na00732d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Vinutha, K. Nagaraja, K. V. Sajjan, Kiran Khan, Umair Madhukesh, J. K. Kolli, Uma C. Muhammad, Taseer Thermal performance of Fe(3)O(4), SWCNT, MWCNT and H(2)O based on magnetohydrodynamic nanofluid flow across a wedge with significant impacts of Soret and Dufour |
title | Thermal performance of Fe(3)O(4), SWCNT, MWCNT and H(2)O based on magnetohydrodynamic nanofluid flow across a wedge with significant impacts of Soret and Dufour |
title_full | Thermal performance of Fe(3)O(4), SWCNT, MWCNT and H(2)O based on magnetohydrodynamic nanofluid flow across a wedge with significant impacts of Soret and Dufour |
title_fullStr | Thermal performance of Fe(3)O(4), SWCNT, MWCNT and H(2)O based on magnetohydrodynamic nanofluid flow across a wedge with significant impacts of Soret and Dufour |
title_full_unstemmed | Thermal performance of Fe(3)O(4), SWCNT, MWCNT and H(2)O based on magnetohydrodynamic nanofluid flow across a wedge with significant impacts of Soret and Dufour |
title_short | Thermal performance of Fe(3)O(4), SWCNT, MWCNT and H(2)O based on magnetohydrodynamic nanofluid flow across a wedge with significant impacts of Soret and Dufour |
title_sort | thermal performance of fe(3)o(4), swcnt, mwcnt and h(2)o based on magnetohydrodynamic nanofluid flow across a wedge with significant impacts of soret and dufour |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10597548/ https://www.ncbi.nlm.nih.gov/pubmed/37881705 http://dx.doi.org/10.1039/d3na00732d |
work_keys_str_mv | AT vinuthak thermalperformanceoffe3o4swcntmwcntandh2obasedonmagnetohydrodynamicnanofluidflowacrossawedgewithsignificantimpactsofsoretanddufour AT nagarajakv thermalperformanceoffe3o4swcntmwcntandh2obasedonmagnetohydrodynamicnanofluidflowacrossawedgewithsignificantimpactsofsoretanddufour AT sajjankiran thermalperformanceoffe3o4swcntmwcntandh2obasedonmagnetohydrodynamicnanofluidflowacrossawedgewithsignificantimpactsofsoretanddufour AT khanumair thermalperformanceoffe3o4swcntmwcntandh2obasedonmagnetohydrodynamicnanofluidflowacrossawedgewithsignificantimpactsofsoretanddufour AT madhukeshjk thermalperformanceoffe3o4swcntmwcntandh2obasedonmagnetohydrodynamicnanofluidflowacrossawedgewithsignificantimpactsofsoretanddufour AT kolliumac thermalperformanceoffe3o4swcntmwcntandh2obasedonmagnetohydrodynamicnanofluidflowacrossawedgewithsignificantimpactsofsoretanddufour AT muhammadtaseer thermalperformanceoffe3o4swcntmwcntandh2obasedonmagnetohydrodynamicnanofluidflowacrossawedgewithsignificantimpactsofsoretanddufour |