Cargando…
Quantum annealing-based clustering of single cell RNA-seq data
Cluster analysis is a crucial stage in the analysis and interpretation of single-cell gene expression (scRNA-seq) data. It is an inherently ill-posed problem whose solutions depend heavily on hyper-parameter and algorithmic choice. The popular approach of K-means clustering, for example, depends hea...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10597635/ https://www.ncbi.nlm.nih.gov/pubmed/37874950 http://dx.doi.org/10.1093/bib/bbad377 |
Sumario: | Cluster analysis is a crucial stage in the analysis and interpretation of single-cell gene expression (scRNA-seq) data. It is an inherently ill-posed problem whose solutions depend heavily on hyper-parameter and algorithmic choice. The popular approach of K-means clustering, for example, depends heavily on the choice of K and the convergence of the expectation-maximization algorithm to local minima of the objective. Exhaustive search of the space for multiple good quality solutions is known to be a complex problem. Here, we show that quantum computing offers a solution to exploring the cost function of clustering by quantum annealing, implemented on a quantum computing facility offered by D-Wave [1]. Out formulation extracts minimum vertex cover of an affinity graph to sub-sample the cell population and quantum annealing to optimise the cost function. A distribution of low-energy solutions can thus be extracted, offering alternate hypotheses about how genes group together in their space of expressions. |
---|