Cargando…

Quantum annealing-based clustering of single cell RNA-seq data

Cluster analysis is a crucial stage in the analysis and interpretation of single-cell gene expression (scRNA-seq) data. It is an inherently ill-posed problem whose solutions depend heavily on hyper-parameter and algorithmic choice. The popular approach of K-means clustering, for example, depends hea...

Descripción completa

Detalles Bibliográficos
Autores principales: Kubacki, Michal, Niranjan, Mahesan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10597635/
https://www.ncbi.nlm.nih.gov/pubmed/37874950
http://dx.doi.org/10.1093/bib/bbad377
Descripción
Sumario:Cluster analysis is a crucial stage in the analysis and interpretation of single-cell gene expression (scRNA-seq) data. It is an inherently ill-posed problem whose solutions depend heavily on hyper-parameter and algorithmic choice. The popular approach of K-means clustering, for example, depends heavily on the choice of K and the convergence of the expectation-maximization algorithm to local minima of the objective. Exhaustive search of the space for multiple good quality solutions is known to be a complex problem. Here, we show that quantum computing offers a solution to exploring the cost function of clustering by quantum annealing, implemented on a quantum computing facility offered by D-Wave [1]. Out formulation extracts minimum vertex cover of an affinity graph to sub-sample the cell population and quantum annealing to optimise the cost function. A distribution of low-energy solutions can thus be extracted, offering alternate hypotheses about how genes group together in their space of expressions.