Cargando…

The microbial metabolite desaminotyrosine enhances T-cell priming and cancer immunotherapy with immune checkpoint inhibitors

BACKGROUND: Inter-individual differences in response to immune checkpoint inhibitors (ICI) remain a major challenge in cancer treatment. The composition of the gut microbiome has been associated with differential ICI outcome, but the underlying molecular mechanisms remain unclear, and therapeutic mo...

Descripción completa

Detalles Bibliográficos
Autores principales: Joachim, Laura, Göttert, Sascha, Sax, Anna, Steiger, Katja, Neuhaus, Klaus, Heinrich, Paul, Fan, Kaiji, Orberg, Erik Thiele, Kleigrewe, Karin, Ruland, Jürgen, Bassermann, Florian, Herr, Wolfgang, Posch, Christian, Heidegger, Simon, Poeck, Hendrik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10597767/
https://www.ncbi.nlm.nih.gov/pubmed/37865045
http://dx.doi.org/10.1016/j.ebiom.2023.104834
_version_ 1785125415713505280
author Joachim, Laura
Göttert, Sascha
Sax, Anna
Steiger, Katja
Neuhaus, Klaus
Heinrich, Paul
Fan, Kaiji
Orberg, Erik Thiele
Kleigrewe, Karin
Ruland, Jürgen
Bassermann, Florian
Herr, Wolfgang
Posch, Christian
Heidegger, Simon
Poeck, Hendrik
author_facet Joachim, Laura
Göttert, Sascha
Sax, Anna
Steiger, Katja
Neuhaus, Klaus
Heinrich, Paul
Fan, Kaiji
Orberg, Erik Thiele
Kleigrewe, Karin
Ruland, Jürgen
Bassermann, Florian
Herr, Wolfgang
Posch, Christian
Heidegger, Simon
Poeck, Hendrik
author_sort Joachim, Laura
collection PubMed
description BACKGROUND: Inter-individual differences in response to immune checkpoint inhibitors (ICI) remain a major challenge in cancer treatment. The composition of the gut microbiome has been associated with differential ICI outcome, but the underlying molecular mechanisms remain unclear, and therapeutic modulation challenging. METHODS: We established an in vivo model to treat C57Bl/6j mice with the type-I interferon (IFN-I)-modulating, bacterial-derived metabolite desaminotyrosine (DAT) to improve ICI therapy. Broad spectrum antibiotics were used to mimic gut microbial dysbiosis and associated ICI resistance. We utilized genetic mouse models to address the role of host IFN-I in DAT-modulated antitumour immunity. Changes in gut microbiota were assessed using 16S-rRNA sequencing analyses. FINDINGS: We found that oral supplementation of mice with the microbial metabolite DAT delays tumour growth and promotes ICI immunotherapy with anti-CTLA-4 or anti-PD-1. DAT-enhanced antitumour immunity was associated with more activated T cells and natural killer cells in the tumour microenvironment and was dependent on host IFN-I signalling. Consistent with this, DAT potently enhanced expansion of antigen-specific T cells following vaccination with an IFN-I-inducing adjuvant. DAT supplementation in mice compensated for the negative effects of broad-spectrum antibiotic-induced dysbiosis on anti-CTLA-4-mediated antitumour immunity. Oral administration of DAT altered the gut microbial composition in mice with increased abundance of bacterial taxa that are associated with beneficial response to ICI immunotherapy. INTERPRETATION: We introduce the therapeutic use of an IFN-I-modulating bacterial-derived metabolite to overcome resistance to ICI. This approach is a promising strategy particularly for patients with a history of broad-spectrum antibiotic use and associated loss of gut microbial diversity. FUNDING: 10.13039/100005190Melanoma Research Alliance, 10.13039/501100001659Deutsche Forschungsgemeinschaft, 10.13039/501100005972German Cancer Aid, 10.13039/100008672Wilhelm Sander Foundation, 10.13039/100008273Novartis Foundation.
format Online
Article
Text
id pubmed-10597767
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-105977672023-10-26 The microbial metabolite desaminotyrosine enhances T-cell priming and cancer immunotherapy with immune checkpoint inhibitors Joachim, Laura Göttert, Sascha Sax, Anna Steiger, Katja Neuhaus, Klaus Heinrich, Paul Fan, Kaiji Orberg, Erik Thiele Kleigrewe, Karin Ruland, Jürgen Bassermann, Florian Herr, Wolfgang Posch, Christian Heidegger, Simon Poeck, Hendrik eBioMedicine Articles BACKGROUND: Inter-individual differences in response to immune checkpoint inhibitors (ICI) remain a major challenge in cancer treatment. The composition of the gut microbiome has been associated with differential ICI outcome, but the underlying molecular mechanisms remain unclear, and therapeutic modulation challenging. METHODS: We established an in vivo model to treat C57Bl/6j mice with the type-I interferon (IFN-I)-modulating, bacterial-derived metabolite desaminotyrosine (DAT) to improve ICI therapy. Broad spectrum antibiotics were used to mimic gut microbial dysbiosis and associated ICI resistance. We utilized genetic mouse models to address the role of host IFN-I in DAT-modulated antitumour immunity. Changes in gut microbiota were assessed using 16S-rRNA sequencing analyses. FINDINGS: We found that oral supplementation of mice with the microbial metabolite DAT delays tumour growth and promotes ICI immunotherapy with anti-CTLA-4 or anti-PD-1. DAT-enhanced antitumour immunity was associated with more activated T cells and natural killer cells in the tumour microenvironment and was dependent on host IFN-I signalling. Consistent with this, DAT potently enhanced expansion of antigen-specific T cells following vaccination with an IFN-I-inducing adjuvant. DAT supplementation in mice compensated for the negative effects of broad-spectrum antibiotic-induced dysbiosis on anti-CTLA-4-mediated antitumour immunity. Oral administration of DAT altered the gut microbial composition in mice with increased abundance of bacterial taxa that are associated with beneficial response to ICI immunotherapy. INTERPRETATION: We introduce the therapeutic use of an IFN-I-modulating bacterial-derived metabolite to overcome resistance to ICI. This approach is a promising strategy particularly for patients with a history of broad-spectrum antibiotic use and associated loss of gut microbial diversity. FUNDING: 10.13039/100005190Melanoma Research Alliance, 10.13039/501100001659Deutsche Forschungsgemeinschaft, 10.13039/501100005972German Cancer Aid, 10.13039/100008672Wilhelm Sander Foundation, 10.13039/100008273Novartis Foundation. Elsevier 2023-10-20 /pmc/articles/PMC10597767/ /pubmed/37865045 http://dx.doi.org/10.1016/j.ebiom.2023.104834 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Articles
Joachim, Laura
Göttert, Sascha
Sax, Anna
Steiger, Katja
Neuhaus, Klaus
Heinrich, Paul
Fan, Kaiji
Orberg, Erik Thiele
Kleigrewe, Karin
Ruland, Jürgen
Bassermann, Florian
Herr, Wolfgang
Posch, Christian
Heidegger, Simon
Poeck, Hendrik
The microbial metabolite desaminotyrosine enhances T-cell priming and cancer immunotherapy with immune checkpoint inhibitors
title The microbial metabolite desaminotyrosine enhances T-cell priming and cancer immunotherapy with immune checkpoint inhibitors
title_full The microbial metabolite desaminotyrosine enhances T-cell priming and cancer immunotherapy with immune checkpoint inhibitors
title_fullStr The microbial metabolite desaminotyrosine enhances T-cell priming and cancer immunotherapy with immune checkpoint inhibitors
title_full_unstemmed The microbial metabolite desaminotyrosine enhances T-cell priming and cancer immunotherapy with immune checkpoint inhibitors
title_short The microbial metabolite desaminotyrosine enhances T-cell priming and cancer immunotherapy with immune checkpoint inhibitors
title_sort microbial metabolite desaminotyrosine enhances t-cell priming and cancer immunotherapy with immune checkpoint inhibitors
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10597767/
https://www.ncbi.nlm.nih.gov/pubmed/37865045
http://dx.doi.org/10.1016/j.ebiom.2023.104834
work_keys_str_mv AT joachimlaura themicrobialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT gottertsascha themicrobialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT saxanna themicrobialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT steigerkatja themicrobialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT neuhausklaus themicrobialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT heinrichpaul themicrobialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT fankaiji themicrobialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT orbergerikthiele themicrobialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT kleigrewekarin themicrobialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT rulandjurgen themicrobialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT bassermannflorian themicrobialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT herrwolfgang themicrobialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT poschchristian themicrobialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT heideggersimon themicrobialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT poeckhendrik themicrobialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT joachimlaura microbialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT gottertsascha microbialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT saxanna microbialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT steigerkatja microbialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT neuhausklaus microbialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT heinrichpaul microbialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT fankaiji microbialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT orbergerikthiele microbialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT kleigrewekarin microbialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT rulandjurgen microbialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT bassermannflorian microbialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT herrwolfgang microbialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT poschchristian microbialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT heideggersimon microbialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors
AT poeckhendrik microbialmetabolitedesaminotyrosineenhancestcellprimingandcancerimmunotherapywithimmunecheckpointinhibitors