Cargando…
Ultraviolet–visible spectroscopy combined with machine learning as a rapid detection method to the predict adulteration of honey
Honey is often adulterated with inexpensive and artificial sweeteners. To overcome the time-consuming honey adulteration tests, which require precision, chemicals, and sample preparation, it is needful to develop trustworthy analytical methods to assure its authenticity. In the present study, the po...
Autores principales: | Razavi, Razie, Kenari, Reza Esmaeilzadeh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10597822/ https://www.ncbi.nlm.nih.gov/pubmed/37886742 http://dx.doi.org/10.1016/j.heliyon.2023.e20973 |
Ejemplares similares
-
Raman spectroscopy combined with machine learning algorithms to detect adulterated Suichang native honey
por: Hu, Shuhan, et al.
Publicado: (2022) -
Phenolic profile and antioxidant activity of free/bound phenolic compounds of sesame and properties of encapsulated nanoparticles in different wall materials
por: Esmaeilzadeh Kenari, Reza, et al.
Publicado: (2022) -
Encapsulation of bougainvillea (Bougainvillea spectabilis) flower extract in Urtica dioica L. seed gum: Characterization, antioxidant/antimicrobial properties, and in vitro digestion
por: Kenari, Reza Esmaeilzadeh, et al.
Publicado: (2022) -
Identification of Stingless Bee Honey Adulteration Using Visible-Near Infrared Spectroscopy Combined with Aquaphotomics
por: Raypah, Muna E., et al.
Publicado: (2022) -
Identifying type of sugar adulterants in honey: Combined application of NMR spectroscopy and supervised machine learning classification
por: Rachineni, Kavitha, et al.
Publicado: (2022)