Cargando…

lesSDRF is more: maximizing the value of proteomics data through streamlined metadata annotation

Public proteomics data often lack essential metadata, limiting its potential. To address this, we present lesSDRF, a tool to simplify the process of metadata annotation, thereby ensuring that data leave a lasting, impactful legacy well beyond its initial publication.

Detalles Bibliográficos
Autores principales: Claeys, Tine, Van Den Bossche, Tim, Perez-Riverol, Yasset, Gevaert, Kris, Vizcaíno, Juan Antonio, Martens, Lennart
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598006/
https://www.ncbi.nlm.nih.gov/pubmed/37875519
http://dx.doi.org/10.1038/s41467-023-42543-5
_version_ 1785125458478628864
author Claeys, Tine
Van Den Bossche, Tim
Perez-Riverol, Yasset
Gevaert, Kris
Vizcaíno, Juan Antonio
Martens, Lennart
author_facet Claeys, Tine
Van Den Bossche, Tim
Perez-Riverol, Yasset
Gevaert, Kris
Vizcaíno, Juan Antonio
Martens, Lennart
author_sort Claeys, Tine
collection PubMed
description Public proteomics data often lack essential metadata, limiting its potential. To address this, we present lesSDRF, a tool to simplify the process of metadata annotation, thereby ensuring that data leave a lasting, impactful legacy well beyond its initial publication.
format Online
Article
Text
id pubmed-10598006
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-105980062023-10-26 lesSDRF is more: maximizing the value of proteomics data through streamlined metadata annotation Claeys, Tine Van Den Bossche, Tim Perez-Riverol, Yasset Gevaert, Kris Vizcaíno, Juan Antonio Martens, Lennart Nat Commun Article Public proteomics data often lack essential metadata, limiting its potential. To address this, we present lesSDRF, a tool to simplify the process of metadata annotation, thereby ensuring that data leave a lasting, impactful legacy well beyond its initial publication. Nature Publishing Group UK 2023-10-24 /pmc/articles/PMC10598006/ /pubmed/37875519 http://dx.doi.org/10.1038/s41467-023-42543-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Claeys, Tine
Van Den Bossche, Tim
Perez-Riverol, Yasset
Gevaert, Kris
Vizcaíno, Juan Antonio
Martens, Lennart
lesSDRF is more: maximizing the value of proteomics data through streamlined metadata annotation
title lesSDRF is more: maximizing the value of proteomics data through streamlined metadata annotation
title_full lesSDRF is more: maximizing the value of proteomics data through streamlined metadata annotation
title_fullStr lesSDRF is more: maximizing the value of proteomics data through streamlined metadata annotation
title_full_unstemmed lesSDRF is more: maximizing the value of proteomics data through streamlined metadata annotation
title_short lesSDRF is more: maximizing the value of proteomics data through streamlined metadata annotation
title_sort lessdrf is more: maximizing the value of proteomics data through streamlined metadata annotation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598006/
https://www.ncbi.nlm.nih.gov/pubmed/37875519
http://dx.doi.org/10.1038/s41467-023-42543-5
work_keys_str_mv AT claeystine lessdrfismoremaximizingthevalueofproteomicsdatathroughstreamlinedmetadataannotation
AT vandenbosschetim lessdrfismoremaximizingthevalueofproteomicsdatathroughstreamlinedmetadataannotation
AT perezriverolyasset lessdrfismoremaximizingthevalueofproteomicsdatathroughstreamlinedmetadataannotation
AT gevaertkris lessdrfismoremaximizingthevalueofproteomicsdatathroughstreamlinedmetadataannotation
AT vizcainojuanantonio lessdrfismoremaximizingthevalueofproteomicsdatathroughstreamlinedmetadataannotation
AT martenslennart lessdrfismoremaximizingthevalueofproteomicsdatathroughstreamlinedmetadataannotation