Cargando…
Joint triplet loss with semi-hard constraint for data augmentation and disease prediction using gene expression data
The accurate prediction of patients with complex diseases, such as Alzheimer’s disease (AD), as well as disease stages, including early- and late-stage cancer, is challenging owing to substantial variability among patients and limited availability of clinical data. Deep metric learning has emerged a...
Autores principales: | Chung, Yeonwoo, Lee, Hyunju |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598120/ https://www.ncbi.nlm.nih.gov/pubmed/37875602 http://dx.doi.org/10.1038/s41598-023-45467-8 |
Ejemplares similares
-
Super.FELT: supervised feature extraction learning using triplet loss for drug response prediction with multi-omics data
por: Park, Sejin, et al.
Publicado: (2021) -
MSC-CSMC: A multi-objective semi-supervised clustering algorithm based on constraints selection and multi-source constraints for gene expression data
por: Wang, Zeyuan, et al.
Publicado: (2023) -
Prediction of Alzheimer’s disease using blood gene expression data
por: Lee, Taesic, et al.
Publicado: (2020) -
Correlation between Alzheimer’s disease and type 2 diabetes using non-negative matrix factorization
por: Chung, Yeonwoo, et al.
Publicado: (2021) -
PCA via joint graph Laplacian and sparse constraint: Identification of differentially expressed genes and sample clustering on gene expression data
por: Feng, Chun-Mei, et al.
Publicado: (2019)