Cargando…
Detection of Endometriosis Lesions Using Gd-Based Collagen I Targeting Probe in Murine Models of Endometriosis
PURPOSE: Endometriosis is a chronic condition characterized by high fibrotic content and affecting about 10% of women during their reproductive years. Yet, no clinically approved agents are available for non-invasive endometriosis detection. The purpose of this study was to investigate the utility o...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598151/ https://www.ncbi.nlm.nih.gov/pubmed/37418136 http://dx.doi.org/10.1007/s11307-023-01833-6 |
Sumario: | PURPOSE: Endometriosis is a chronic condition characterized by high fibrotic content and affecting about 10% of women during their reproductive years. Yet, no clinically approved agents are available for non-invasive endometriosis detection. The purpose of this study was to investigate the utility of a gadolinium-based collagen type I targeting probe (EP-3533) to non-invasively detect endometriotic lesions using magnetic resonance imaging (MRI). Previously, this probe has been used for detection and staging of fibrotic lesions in the liver, lung, heart, and cancer. In this study we evaluate the potential of EP-3533 for detecting endometriosis in two murine models and compare it with a non-binding isomer (EP-3612). PROCEDURES: For imaging, we utilized two GFP-expressing murine models of endometriosis (suture model and injection model) injected intravenously with EP3533 or EP-33612. Mice were imaged before and after bolus injection of the probes. The dynamic signal enhancement of MR T1 FLASH images was analyzed, normalized, and quantified, and the relative location of lesions was validated through ex vivo fluorescence imaging. Subsequently, the harvested lesions were stained for collagen, and their gadolinium content was quantified by inductively coupled plasma optical emission spectrometry (ICP-OES). RESULTS: We showed that EP-3533 probe increased the signal intensity in T1-weighted images of endometriotic lesions in both models of endometriosis. Such enhancement was not detected in the muscles of the same groups or in endometriotic lesions of mice injected with EP-3612 probe. Consequentially, control tissues had significantly lower gadolinium content, compared to the lesions in experimental groups. Probe accumulation was similar in endometriotic lesions of either model. CONCLUSIONS: This study provides evidence for feasibility of targeting collagen type I in the endometriotic lesions using EP3533 probe. Our future work includes investigation of the utility of this probe for therapeutic delivery in endometriosis to inhibit signaling pathways that cause the disease. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11307-023-01833-6. |
---|