Cargando…
Integrated radiogenomics models predict response to neoadjuvant chemotherapy in high grade serous ovarian cancer
High grade serous ovarian carcinoma (HGSOC) is a highly heterogeneous disease that typically presents at an advanced, metastatic state. The multi-scale complexity of HGSOC is a major obstacle to predicting response to neoadjuvant chemotherapy (NACT) and understanding critical determinants of respons...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598212/ https://www.ncbi.nlm.nih.gov/pubmed/37875466 http://dx.doi.org/10.1038/s41467-023-41820-7 |
_version_ | 1785125506536964096 |
---|---|
author | Crispin-Ortuzar, Mireia Woitek, Ramona Reinius, Marika A. V. Moore, Elizabeth Beer, Lucian Bura, Vlad Rundo, Leonardo McCague, Cathal Ursprung, Stephan Escudero Sanchez, Lorena Martin-Gonzalez, Paula Mouliere, Florent Chandrananda, Dineika Morris, James Goranova, Teodora Piskorz, Anna M. Singh, Naveena Sahdev, Anju Pintican, Roxana Zerunian, Marta Rosenfeld, Nitzan Addley, Helen Jimenez-Linan, Mercedes Markowetz, Florian Sala, Evis Brenton, James D. |
author_facet | Crispin-Ortuzar, Mireia Woitek, Ramona Reinius, Marika A. V. Moore, Elizabeth Beer, Lucian Bura, Vlad Rundo, Leonardo McCague, Cathal Ursprung, Stephan Escudero Sanchez, Lorena Martin-Gonzalez, Paula Mouliere, Florent Chandrananda, Dineika Morris, James Goranova, Teodora Piskorz, Anna M. Singh, Naveena Sahdev, Anju Pintican, Roxana Zerunian, Marta Rosenfeld, Nitzan Addley, Helen Jimenez-Linan, Mercedes Markowetz, Florian Sala, Evis Brenton, James D. |
author_sort | Crispin-Ortuzar, Mireia |
collection | PubMed |
description | High grade serous ovarian carcinoma (HGSOC) is a highly heterogeneous disease that typically presents at an advanced, metastatic state. The multi-scale complexity of HGSOC is a major obstacle to predicting response to neoadjuvant chemotherapy (NACT) and understanding critical determinants of response. Here we present a framework to predict the response of HGSOC patients to NACT integrating baseline clinical, blood-based, and radiomic biomarkers extracted from all primary and metastatic lesions. We use an ensemble machine learning model trained to predict the change in total disease volume using data obtained at diagnosis (n = 72). The model is validated in an internal hold-out cohort (n = 20) and an independent external patient cohort (n = 42). In the external cohort the integrated radiomics model reduces the prediction error by 8% with respect to the clinical model, achieving an AUC of 0.78 for RECIST 1.1 classification compared to 0.47 for the clinical model. Our results emphasize the value of including radiomics data in integrative models of treatment response and provide methods for developing new biomarker-based clinical trials of NACT in HGSOC. |
format | Online Article Text |
id | pubmed-10598212 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-105982122023-10-26 Integrated radiogenomics models predict response to neoadjuvant chemotherapy in high grade serous ovarian cancer Crispin-Ortuzar, Mireia Woitek, Ramona Reinius, Marika A. V. Moore, Elizabeth Beer, Lucian Bura, Vlad Rundo, Leonardo McCague, Cathal Ursprung, Stephan Escudero Sanchez, Lorena Martin-Gonzalez, Paula Mouliere, Florent Chandrananda, Dineika Morris, James Goranova, Teodora Piskorz, Anna M. Singh, Naveena Sahdev, Anju Pintican, Roxana Zerunian, Marta Rosenfeld, Nitzan Addley, Helen Jimenez-Linan, Mercedes Markowetz, Florian Sala, Evis Brenton, James D. Nat Commun Article High grade serous ovarian carcinoma (HGSOC) is a highly heterogeneous disease that typically presents at an advanced, metastatic state. The multi-scale complexity of HGSOC is a major obstacle to predicting response to neoadjuvant chemotherapy (NACT) and understanding critical determinants of response. Here we present a framework to predict the response of HGSOC patients to NACT integrating baseline clinical, blood-based, and radiomic biomarkers extracted from all primary and metastatic lesions. We use an ensemble machine learning model trained to predict the change in total disease volume using data obtained at diagnosis (n = 72). The model is validated in an internal hold-out cohort (n = 20) and an independent external patient cohort (n = 42). In the external cohort the integrated radiomics model reduces the prediction error by 8% with respect to the clinical model, achieving an AUC of 0.78 for RECIST 1.1 classification compared to 0.47 for the clinical model. Our results emphasize the value of including radiomics data in integrative models of treatment response and provide methods for developing new biomarker-based clinical trials of NACT in HGSOC. Nature Publishing Group UK 2023-10-24 /pmc/articles/PMC10598212/ /pubmed/37875466 http://dx.doi.org/10.1038/s41467-023-41820-7 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Crispin-Ortuzar, Mireia Woitek, Ramona Reinius, Marika A. V. Moore, Elizabeth Beer, Lucian Bura, Vlad Rundo, Leonardo McCague, Cathal Ursprung, Stephan Escudero Sanchez, Lorena Martin-Gonzalez, Paula Mouliere, Florent Chandrananda, Dineika Morris, James Goranova, Teodora Piskorz, Anna M. Singh, Naveena Sahdev, Anju Pintican, Roxana Zerunian, Marta Rosenfeld, Nitzan Addley, Helen Jimenez-Linan, Mercedes Markowetz, Florian Sala, Evis Brenton, James D. Integrated radiogenomics models predict response to neoadjuvant chemotherapy in high grade serous ovarian cancer |
title | Integrated radiogenomics models predict response to neoadjuvant chemotherapy in high grade serous ovarian cancer |
title_full | Integrated radiogenomics models predict response to neoadjuvant chemotherapy in high grade serous ovarian cancer |
title_fullStr | Integrated radiogenomics models predict response to neoadjuvant chemotherapy in high grade serous ovarian cancer |
title_full_unstemmed | Integrated radiogenomics models predict response to neoadjuvant chemotherapy in high grade serous ovarian cancer |
title_short | Integrated radiogenomics models predict response to neoadjuvant chemotherapy in high grade serous ovarian cancer |
title_sort | integrated radiogenomics models predict response to neoadjuvant chemotherapy in high grade serous ovarian cancer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598212/ https://www.ncbi.nlm.nih.gov/pubmed/37875466 http://dx.doi.org/10.1038/s41467-023-41820-7 |
work_keys_str_mv | AT crispinortuzarmireia integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer AT woitekramona integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer AT reiniusmarikaav integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer AT mooreelizabeth integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer AT beerlucian integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer AT buravlad integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer AT rundoleonardo integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer AT mccaguecathal integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer AT ursprungstephan integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer AT escuderosanchezlorena integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer AT martingonzalezpaula integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer AT mouliereflorent integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer AT chandranandadineika integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer AT morrisjames integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer AT goranovateodora integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer AT piskorzannam integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer AT singhnaveena integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer AT sahdevanju integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer AT pinticanroxana integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer AT zerunianmarta integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer AT rosenfeldnitzan integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer AT addleyhelen integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer AT jimenezlinanmercedes integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer AT markowetzflorian integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer AT salaevis integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer AT brentonjamesd integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer |