Cargando…

Integrated radiogenomics models predict response to neoadjuvant chemotherapy in high grade serous ovarian cancer

High grade serous ovarian carcinoma (HGSOC) is a highly heterogeneous disease that typically presents at an advanced, metastatic state. The multi-scale complexity of HGSOC is a major obstacle to predicting response to neoadjuvant chemotherapy (NACT) and understanding critical determinants of respons...

Descripción completa

Detalles Bibliográficos
Autores principales: Crispin-Ortuzar, Mireia, Woitek, Ramona, Reinius, Marika A. V., Moore, Elizabeth, Beer, Lucian, Bura, Vlad, Rundo, Leonardo, McCague, Cathal, Ursprung, Stephan, Escudero Sanchez, Lorena, Martin-Gonzalez, Paula, Mouliere, Florent, Chandrananda, Dineika, Morris, James, Goranova, Teodora, Piskorz, Anna M., Singh, Naveena, Sahdev, Anju, Pintican, Roxana, Zerunian, Marta, Rosenfeld, Nitzan, Addley, Helen, Jimenez-Linan, Mercedes, Markowetz, Florian, Sala, Evis, Brenton, James D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598212/
https://www.ncbi.nlm.nih.gov/pubmed/37875466
http://dx.doi.org/10.1038/s41467-023-41820-7
_version_ 1785125506536964096
author Crispin-Ortuzar, Mireia
Woitek, Ramona
Reinius, Marika A. V.
Moore, Elizabeth
Beer, Lucian
Bura, Vlad
Rundo, Leonardo
McCague, Cathal
Ursprung, Stephan
Escudero Sanchez, Lorena
Martin-Gonzalez, Paula
Mouliere, Florent
Chandrananda, Dineika
Morris, James
Goranova, Teodora
Piskorz, Anna M.
Singh, Naveena
Sahdev, Anju
Pintican, Roxana
Zerunian, Marta
Rosenfeld, Nitzan
Addley, Helen
Jimenez-Linan, Mercedes
Markowetz, Florian
Sala, Evis
Brenton, James D.
author_facet Crispin-Ortuzar, Mireia
Woitek, Ramona
Reinius, Marika A. V.
Moore, Elizabeth
Beer, Lucian
Bura, Vlad
Rundo, Leonardo
McCague, Cathal
Ursprung, Stephan
Escudero Sanchez, Lorena
Martin-Gonzalez, Paula
Mouliere, Florent
Chandrananda, Dineika
Morris, James
Goranova, Teodora
Piskorz, Anna M.
Singh, Naveena
Sahdev, Anju
Pintican, Roxana
Zerunian, Marta
Rosenfeld, Nitzan
Addley, Helen
Jimenez-Linan, Mercedes
Markowetz, Florian
Sala, Evis
Brenton, James D.
author_sort Crispin-Ortuzar, Mireia
collection PubMed
description High grade serous ovarian carcinoma (HGSOC) is a highly heterogeneous disease that typically presents at an advanced, metastatic state. The multi-scale complexity of HGSOC is a major obstacle to predicting response to neoadjuvant chemotherapy (NACT) and understanding critical determinants of response. Here we present a framework to predict the response of HGSOC patients to NACT integrating baseline clinical, blood-based, and radiomic biomarkers extracted from all primary and metastatic lesions. We use an ensemble machine learning model trained to predict the change in total disease volume using data obtained at diagnosis (n = 72). The model is validated in an internal hold-out cohort (n = 20) and an independent external patient cohort (n = 42). In the external cohort the integrated radiomics model reduces the prediction error by 8% with respect to the clinical model, achieving an AUC of 0.78 for RECIST 1.1 classification compared to 0.47 for the clinical model. Our results emphasize the value of including radiomics data in integrative models of treatment response and provide methods for developing new biomarker-based clinical trials of NACT in HGSOC.
format Online
Article
Text
id pubmed-10598212
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-105982122023-10-26 Integrated radiogenomics models predict response to neoadjuvant chemotherapy in high grade serous ovarian cancer Crispin-Ortuzar, Mireia Woitek, Ramona Reinius, Marika A. V. Moore, Elizabeth Beer, Lucian Bura, Vlad Rundo, Leonardo McCague, Cathal Ursprung, Stephan Escudero Sanchez, Lorena Martin-Gonzalez, Paula Mouliere, Florent Chandrananda, Dineika Morris, James Goranova, Teodora Piskorz, Anna M. Singh, Naveena Sahdev, Anju Pintican, Roxana Zerunian, Marta Rosenfeld, Nitzan Addley, Helen Jimenez-Linan, Mercedes Markowetz, Florian Sala, Evis Brenton, James D. Nat Commun Article High grade serous ovarian carcinoma (HGSOC) is a highly heterogeneous disease that typically presents at an advanced, metastatic state. The multi-scale complexity of HGSOC is a major obstacle to predicting response to neoadjuvant chemotherapy (NACT) and understanding critical determinants of response. Here we present a framework to predict the response of HGSOC patients to NACT integrating baseline clinical, blood-based, and radiomic biomarkers extracted from all primary and metastatic lesions. We use an ensemble machine learning model trained to predict the change in total disease volume using data obtained at diagnosis (n = 72). The model is validated in an internal hold-out cohort (n = 20) and an independent external patient cohort (n = 42). In the external cohort the integrated radiomics model reduces the prediction error by 8% with respect to the clinical model, achieving an AUC of 0.78 for RECIST 1.1 classification compared to 0.47 for the clinical model. Our results emphasize the value of including radiomics data in integrative models of treatment response and provide methods for developing new biomarker-based clinical trials of NACT in HGSOC. Nature Publishing Group UK 2023-10-24 /pmc/articles/PMC10598212/ /pubmed/37875466 http://dx.doi.org/10.1038/s41467-023-41820-7 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Crispin-Ortuzar, Mireia
Woitek, Ramona
Reinius, Marika A. V.
Moore, Elizabeth
Beer, Lucian
Bura, Vlad
Rundo, Leonardo
McCague, Cathal
Ursprung, Stephan
Escudero Sanchez, Lorena
Martin-Gonzalez, Paula
Mouliere, Florent
Chandrananda, Dineika
Morris, James
Goranova, Teodora
Piskorz, Anna M.
Singh, Naveena
Sahdev, Anju
Pintican, Roxana
Zerunian, Marta
Rosenfeld, Nitzan
Addley, Helen
Jimenez-Linan, Mercedes
Markowetz, Florian
Sala, Evis
Brenton, James D.
Integrated radiogenomics models predict response to neoadjuvant chemotherapy in high grade serous ovarian cancer
title Integrated radiogenomics models predict response to neoadjuvant chemotherapy in high grade serous ovarian cancer
title_full Integrated radiogenomics models predict response to neoadjuvant chemotherapy in high grade serous ovarian cancer
title_fullStr Integrated radiogenomics models predict response to neoadjuvant chemotherapy in high grade serous ovarian cancer
title_full_unstemmed Integrated radiogenomics models predict response to neoadjuvant chemotherapy in high grade serous ovarian cancer
title_short Integrated radiogenomics models predict response to neoadjuvant chemotherapy in high grade serous ovarian cancer
title_sort integrated radiogenomics models predict response to neoadjuvant chemotherapy in high grade serous ovarian cancer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598212/
https://www.ncbi.nlm.nih.gov/pubmed/37875466
http://dx.doi.org/10.1038/s41467-023-41820-7
work_keys_str_mv AT crispinortuzarmireia integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer
AT woitekramona integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer
AT reiniusmarikaav integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer
AT mooreelizabeth integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer
AT beerlucian integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer
AT buravlad integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer
AT rundoleonardo integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer
AT mccaguecathal integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer
AT ursprungstephan integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer
AT escuderosanchezlorena integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer
AT martingonzalezpaula integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer
AT mouliereflorent integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer
AT chandranandadineika integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer
AT morrisjames integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer
AT goranovateodora integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer
AT piskorzannam integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer
AT singhnaveena integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer
AT sahdevanju integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer
AT pinticanroxana integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer
AT zerunianmarta integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer
AT rosenfeldnitzan integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer
AT addleyhelen integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer
AT jimenezlinanmercedes integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer
AT markowetzflorian integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer
AT salaevis integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer
AT brentonjamesd integratedradiogenomicsmodelspredictresponsetoneoadjuvantchemotherapyinhighgradeserousovariancancer