Cargando…
Surface measure on, and the local geometry of, sub-Riemannian manifolds
We prove an integral formula for the spherical measure of hypersurfaces in equiregular sub-Riemannian manifolds. Among various technical tools, we establish a general criterion for the uniform convergence of parametrized sub-Riemannian distances, and local uniform asymptotics for the diameter of sma...
Autores principales: | Don, Sebastiano, Magnani, Valentino |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598233/ https://www.ncbi.nlm.nih.gov/pubmed/37886618 http://dx.doi.org/10.1007/s00526-023-02590-8 |
Ejemplares similares
-
Contact manifolds in Riemannian geometry
por: Blair, David Ervin
Publicado: (1976) -
An introduction to differentiable manifolds and Riemannian geometry
por: Boothby, William Munger 1918-
Publicado: (1986) -
Riemannian geometry of contact and symplectic manifolds
por: Blair, David E
Publicado: (2002) -
An introduction to differentiable manifolds and Riemannian geometry
por: Boothby, William Munger
Publicado: (1986) -
Riemannian Geometry of Contact and Symplectic Manifolds
por: Blair, David E
Publicado: (2010)