Cargando…
Image based prognosis in head and neck cancer using convolutional neural networks: a case study in reproducibility and optimization
In the past decade, there has been a sharp increase in publications describing applications of convolutional neural networks (CNNs) in medical image analysis. However, recent reviews have warned of the lack of reproducibility of most such studies, which has impeded closer examination of the models a...
Autores principales: | Mateus, Pedro, Volmer, Leroy, Wee, Leonard, Aerts, Hugo J. W. L., Hoebers, Frank, Dekker, Andre, Bermejo, Inigo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598263/ https://www.ncbi.nlm.nih.gov/pubmed/37875663 http://dx.doi.org/10.1038/s41598-023-45486-5 |
Ejemplares similares
-
Improving reproducibility and performance of radiomics in low‐dose CT using cycle GANs
por: Chen, Junhua, et al.
Publicado: (2022) -
Repeatability and Reproducibility of Radiomic Features: A Systematic Review
por: Traverso, Alberto, et al.
Publicado: (2018) -
Explainable convolutional neural networks for assessing head and neck cancer histopathology
por: Dörrich, Marion, et al.
Publicado: (2023) -
Artificial intelligence‐based clinical decision support in modern medical physics: Selection, acceptance, commissioning, and quality assurance
por: Mahadevaiah, Geetha, et al.
Publicado: (2020) -
FAIR‐compliant clinical, radiomics and DICOM metadata of RIDER, interobserver, Lung1 and head‐Neck1 TCIA collections
por: Kalendralis, Petros, et al.
Publicado: (2020)