Cargando…

Antimicrobial properties of green synthesized silver and chitosan nanocomposites

An eco-friendly and simple approach was carried out for the synthesis of silver-chitosan nanocomposites using Azadirachta indica and fluconazole-mediated aqueous extract. This extract acted as a reducing agent as well as a capping agent for the green synthesis of silver nanoparticles. Chitosan nanop...

Descripción completa

Detalles Bibliográficos
Autores principales: S, Dhevishri, Parameswari, B Devi, Annapoorni, Hariharan, Shankar, MS Sathya, S, Rajesh Kumar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Biomedical Informatics 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598352/
https://www.ncbi.nlm.nih.gov/pubmed/37885782
http://dx.doi.org/10.6026/97320630019745
Descripción
Sumario:An eco-friendly and simple approach was carried out for the synthesis of silver-chitosan nanocomposites using Azadirachta indica and fluconazole-mediated aqueous extract. This extract acted as a reducing agent as well as a capping agent for the green synthesis of silver nanoparticles. Chitosan nanoparticles on the other hand were synthesized from the deacetylation of the chitin matrix. To confirm the nanoparticle synthesis, a UV- A visible spectrophotometer was used and FTIR analysis confirmed the presence of functional groups in the prepared extract. The morphological characteristics of silver and chitosan nanoparticles and as nano-composites were studied and confirmed using scanning electron microscopy (SEM) analysis. The synthesized silver-chitosan nanocomposites were subjected to well-loaded agar plates for the evaluation of antibacterial properties against the Streptococcus mutans and Candida albicans for their antifungal properties. The synthesized silver and chitosan nanoparticles showed antibacterial and antifungal activities against common oral micro flora such as Streptococcus mutans and Candida albicans which were measured using the zone of inhibition method. This approach is a one-step, economical and eco-friendly, biocompatible, and effective alternative for nanoparticle synthesis for various prosthetic applications.