Cargando…

Anti oxidative/neuro-inflammation properties of Withania somnifera root extract on rotenone induced stress in rat brain

Parkinson's disease (PD) is a neurological condition that worsens with age (i.e., 1% of people over 65) with no permanent cure. Hence, finding a disease-modifying agent with fewer undesirable side effects is urgently needed. Parkinson's disease (PD) pathology results in the degeneration of...

Descripción completa

Detalles Bibliográficos
Autores principales: Epuri, Vishala, Prathap, Lavanya, Reddy, Venkateshwar, Krishnan, Madhan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Biomedical Informatics 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598367/
https://www.ncbi.nlm.nih.gov/pubmed/37885788
http://dx.doi.org/10.6026/97320630019729
Descripción
Sumario:Parkinson's disease (PD) is a neurological condition that worsens with age (i.e., 1% of people over 65) with no permanent cure. Hence, finding a disease-modifying agent with fewer undesirable side effects is urgently needed. Parkinson's disease (PD) pathology results in the degeneration of dopaminergic (DAergic) neurons by accumulating lewy bodies, alpha-synuclein (-syn), lowering anti-oxidants, increasing neuronal inflammation, and altering neuron shape. A well-researched natural substance called Withania somnifera (WS) has a potent anti-oxidative, anti-inflammatory, and anti-neurodegenerative impact. WS, sometimes called as Indian Ginseng, is a subtropical undershrub of the Solanaceae family together with Ashwagandha. In the current work, EWSR's anti-inflammatory and neuroprotective efficacy was assessed in relation to rotenone-induced oxidative stress (i.e., LPO, CAT, and SOD and GSH), microglial activation, and neurodegeneration in the rotenone rat PD model. In ROT-induced brains, EWSR therapy resulted in a considerable decrease in LPO and increased levels of the antioxidants SOD, CAT, and GSH. Furthermore, our research showed that the intraperitoneal treatment of EWSR (40 mg/kg) in rotenone-induced rats reduced microglial activation and neuron loss in the substantia nigra (SN) and hippocampus caused by rotenone-induced neurotoxicity. Based on the observations, EWSR can be considered as an excellent source for neuroprotection, due to its significant anti-oxidative, anti-inflammatory, anti-neurodegenerative and anti-microglial properties when administered individually and in combination with known anti-inflammatory compounds (Doxycycline and Ellagic acids). But, further research is required before replacing the known neuroprotective treatments with phytochemical treatments.