Cargando…
Automated breast tumor ultrasound image segmentation with hybrid UNet and classification using fine-tuned CNN model
INTRODUCTION: Breast cancer stands as the second most deadly form of cancer among women worldwide. Early diagnosis and treatment can significantly mitigate mortality rates. PURPOSE: The study aims to classify breast ultrasound images into benign and malignant tumors. This approach involves segmentin...
Autores principales: | Hossain, Shahed, Azam, Sami, Montaha, Sidratul, Karim, Asif, Chowa, Sadia Sultana, Mondol, Chaity, Zahid Hasan, Md, Jonkman, Mirjam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598544/ https://www.ncbi.nlm.nih.gov/pubmed/37885728 http://dx.doi.org/10.1016/j.heliyon.2023.e21369 |
Ejemplares similares
-
BreastNet18: A High Accuracy Fine-Tuned VGG16 Model Evaluated Using Ablation Study for Diagnosing Breast Cancer from Enhanced Mammography Images
por: Montaha, Sidratul, et al.
Publicado: (2021) -
Automated Detection of Broncho-Arterial Pairs Using CT Scans Employing Different Approaches to Classify Lung Diseases
por: Azam, Sami, et al.
Publicado: (2023) -
A Robust Framework Combining Image Processing and Deep Learning Hybrid Model to Classify Cardiovascular Diseases Using a Limited Number of Paper-Based Complex ECG Images
por: Fatema, Kaniz, et al.
Publicado: (2022) -
A novel Data and Model Centric artificial intelligence based approach in developing high-performance Named Entity Recognition for Bengali Language
por: Lima, Khadija Akter, et al.
Publicado: (2023) -
An Automated Broncho-Arterial (BA) Pair Segmentation Process and Assessment of BA Ratios in Children with Bronchiectasis Using Lung HRCT Scans: A Pilot Study
por: Azam, Sami, et al.
Publicado: (2023)